
FE3CWS

THE THREE
“CO”
WINTER
SCHOOL
MATERIAL
Intellectual output 1 of the
ERASMUS+ project 2017-1-SK01-
KA203-035402

Some words about the

Contents
• 9 topics related to software

composition, comprehension and
correctness

• 10 authors from 7 European
universities from Croatia, Hungary,
Netherlands, Portugal and
Slovakia

• Available in 7 languages: English,
Hungarian, Slovak, Croatian,
Romanian, Bulgarian and
Portuguese

The three “CO” (Composability, Comprehensibility and
Correctness) Winter School (3COWS) is the first intensive
programme for higher education learners and teaching staff
extending the community of the Central European Functional
Programming (CEFP) summer school in the frame of the
ERASMUS+ project No. 2017-1-SK01-KA203-035402 “Focusing
Education on Composability, Comprehensibility and Correctness
of Working Software” that was held between 22 and 26 January
2018.

The included material was created and presented in the frame of
the above mentioned project. This publication is the print-
formatted version of the intellectual output O1 of the project.

© European Union, 2017-2019

The information and views set out in this publication are those of
the author(s) and do not necessarily reflect the official opinion of
the European Union. Neither the European Union institutions and
bodies nor any person acting on their behalf may be held
responsible for the use which may be made of the information
contained therein.

Table of contents

1. Acquisition of Natural Language by Machines

2. Static Code Analysis with CodeChecker

3. Programming in Management and Orchestration of
Virtualized Network Resources

4. Cloud Computing and Functional Programming in
Education

5. Modern type-safe embedding of attribute grammars

6. How Green Is Your Process?

7. Functional Programming of Devices

8. Code Comprehension with CodeCompass

9. Functional Programming Skeletons for High-
Performance Computing

Acquisition of
Natural
Language by
Machines
Construction of thinking machine is a great challenge. The
relationship of language and mind is interesting for
computer scientists a it is discussed in wider context also
by historians, psychologists, linguists and philosophers.

For example, Renfrew [31] characterizes human as a
symbolic being considering that the natural language
development is the result of symbols exchange in
communication. Gardenfors [14] states that the language
concepts have a hierarchical structure. Grammatical

evolution [24] and genetic evolution of languages [15]
impact the problem of structural expansion, hence, they
are applicable just for simple languages in a deterministic
manner. It turns out that genetic strings in the role of the
values of semantic conclusions is more promising
approach to the language evolution than the
straightforward application of the genetic structure of the
human brain by an analogy. We also recognized that the
process of evolution takes place at different language
meta-levels.

Chomskys hypothesis on the existence of an universal
grammar for all natural languages [7] is very interesting
and motivating. But maybe the universal grammar should
not be understood like a fixed and parametrized
grammatical structure, but rather as an universal algorithm,
i.e. deterministic progress at a meta-language level
parametrized by the parameters that represent meaningful,
i.e. semantic values. Edelman [12] states that the machine
mind has language substance and is symbolic and at the
same time computational. It follows that the mind is not just
symbolic but also a dynamic process, which expresses
ceaseless change of language. And finally, in Shaumyans
applicative universal grammar [34], language is also
expressed in terms of dynamic, even applicative processes.

The benefit of semiotic language theory is that syntax and
semantics are mutually bound in each time, and they are
not separable. Of course, this invokes the need for taking
into account semantical categories to express the change
of a language.

In our opinion, semiotic theory of languages provides an
opportunity for deterministic evolution of the machine
mind for the case of subsets of natural languages and
formal languages in different forms used in
communication. In this sense Human-Computer and
Computer-Computer communication based on languages
can be unified. Some starting point of this idea, restricted
to regular languages we present in [17]. Currently we know
the algorithm for the transformation of language concepts
to the internal language of the machine mind and we are
also able to derive concepts from this internal language.
This internal language is an analogy to internal language of
human thinking – it is a calm language behind the loud
natural language. At present, we do know neither
conceptualization rules nor the rules on reasoning on
concepts represented in the machine mind. However, we
have clear methodology of the evolution of the machine
mind, represented by applicative dynamic processes with
high degree of parallelism that represent information of

language substance non-redundantly. Moreover,
increasing the abstraction of language concepts decreases
the number of meta-operations and increases the number
of applicative bindings.

We discuss the efficient algorithm of child thinking and we
estimate information flow speed in human brain to 300
trillions signals per second. Then we introduce Slovak
textual and fonetic grammar as well as the method to
translation of text to voice. Further, we illustrate the process
of acquisition of language elements of different abstraction
reading short sample of text, and using hierarchical hash
tables as a model. We also evaluate acquisition process for
massive text of selected book and conclude that language
acquisition with hierarchical abstraction yields non-
redundant graph with the same number of sequential and
parallel bindings without the need for physical store of
data.

Next, we use grammatical approach to communicated
visual objects recognition. First, we need to figure out how
to describe the objects and then we can apply the method
of abstraction to these data. We primarily focus on 3D
object description using grammars. In the grammar theory,
this step is called symbolization.

The symbolization ensures an object description and
provides the fundamental data abstract layer. As we can
see, data abstraction using functional language allows us
to abstract and to process objects easily.

Applicative approach can be used in language processing
even when we use context-free grammars. We show an
algorithm that is able to transform any context free
grammar into supercombinator form. The resulting form
depends on the form of an input grammar, therefore a new
problem arises: finding the proper grammar for the task at
hand.

We briefly show the resulting supercombinator forms of
various grammar types and compare their properties. We
also compare the algorithm efficiency in presented
grammar cases and show that our algorithm can be
improved in case we use grammars without any cycles. We
also discuss the resulting supercombinator forms in term of
grammar compression and re-usability of elements that are
the end result of processing larger scale texts as input
samples.

References

[1] Renfrew, C.: Prehistory: The Making of the Human Mind.
Weidenfeld & Nicholson, (2009)

[2] Gardenfors, P.: Symbolic, conceptual and
subconceptual representations, Human and Machine
Perception, pp. 255-270, (1997)

[3] ONeill, M., and Ryan, C.: Grammatical evolution. IEEE
Transactions on Evolutionary Computation, Vol. 5, No. 4,
pp. 349–358, (2001)

[4] Hugosson J., Hemberg E., Brabazon A., ONeill M.:
Genotype Representations in Grammatical Evolution.
Applied Soft Computing, Vol.10, No.1, pp.36-43, (2010)

[5] Chomsky, N.: Syntactic Structures, Walter De Gruyter:
Mouton classic, (1957)

[6] Edelman, Sh.: Computing the Mind: How the Mind
Really Works, (2008)

[7] Shaumyan, S: A Semiotic Theory of Language.
Bloomington: Indiana University Press, (1987)

[8] Kollar, J.: Formal Processing of Informal Meaning by
Abstract Interpretation, Smart Digital Futures 2014, June
18-20, Chania, Greece, pp. 122–131, (2014)

Static Code
Analysis with
CodeChecker

Overview
Symbolic execution [4] is a popular static analysis
technique used both in program verification and in bug
detection tools. It works by interpreting the code,
introducing a symbol for each value unknown at compile
time (e.g. user-given inputs), and carrying out calculations
symbolically. The analysis engine strives to explore multiple
execution paths simultaneously, although checking all
paths is an intractable problem, due to the vast number of
possibilities.

While a rich literature exists on program verification tools,
error finding tools normally need to settle for survey
papers on individual techniques [1]. In this paper, we not
only discuss individual methods, but also how these
decisions interact and reinforce each other, creating a
system that is greater than the sum of its parts. We focus on
an error finding tool called the Clang Static Analyzer [2]
(hereafter referred to as the Analyzer), and an
infrastructure built around it named CodeChecker [3]. The
emphasis is on achieving end-to-end scalability.

This includes the run time and memory consumption of the
analysis, bug presentation to the users, automatic false
positive suppression, incremental analysis, pattern
discovery in the results, and usage in continuous
integration loops. We also outline future directions and
open problems concerning these tools.

Although the Analyzer can only handle C/C++/Objective-C
code, the techniques introduced in this paper are
language-independent and applicable to other similar
static analysis tools.

Clang Static
Analyzer
We summarize the working mechanism of symbolic
execution and its implementation in the Analyzer. We
discuss its memory representation [6], its handling of the
bindings between values and memory locations, and its
representation of check-specific states (where by check we
mean one module of the Analyzer written to find one
specific type of bug). We also introduce the concept of
symbolic calculations. The choices of representations used
by the Analyzer play a crucial role in making large-scale
software analysis viable.

Since checking all possible execution paths is not possible
in a reasonable amount of time, we need to introduce the
concept of the analysis budget: an estimate of the time-
span we can afford to analyze a given chunk of code. The
goal is to find as many bugs as possible with a low false
positive rate. We show how the Analyzer prioritizes more
interesting paths for analysis, and how it eliminates
infeasible paths in an efficient way using tiered constraint
solving [5].

The Analyzer also employs a number of heuristics to
automatically suppress reports that are likely to be false
positives.

When a bug is found, the corresponding path and set of
constraints are useful to understand the problem. It is,
however, impractical to present all this information to the
user. We show how the analyzer strives to present the user
with a concise yet insightful error report that minimizes the
time to fix said error.

CodeChecker
We define the scalability of static analysis not only in terms
of efficient use of computing resources, but also in terms of
efficient use of human resources like developer time.
CodeChecker is a tool designed to ease the integration of
the Analyzer and other similar static analysis tools into
build systems and continuous integration loops. It is also a
full-fledged bug management system that keeps track of
errors found by these tools.

Given a finite budget of developer time and thousands of
reports on large software, it is important to evaluate reports
with the best return on investment at first.

CodeChecker also supports differential analysis that
prevents developers from introducing new bugs without
requiring them to fix all legacy reports beforehand.

Summary
 In this paper we summarize our experiences collected
while contributing to the state-of-the-art Clang Static
Analyzer and CodeChecker products. Our hope is that it
will prove to be a useful resource for anyone who decides
to work on static analysis tools.

References
[1] Baldoni, R., Coppa, E., Delia, D.C., Demetrescu, C. and
Finocchi, I., 2018. A survey of symbolic execution
techniques. ACM Computing Surveys (CSUR), 51(3), p.50.

[2] Clang Static Analyzer, https://clang-analyzer.llvm.org/.
Last accessed 4 Nov 2018

[3] CodeChecker, https://github.com/Ericsson/
codechecker. Last accessed 4 Nov 2018

[4] King, J.C., 1976. Symbolic execution and program
testing. Communications of the ACM, 19(7), pp.385-394.

[5] Kovacs, R., Horvath, G., 2018. An Initial Prototype of
Tiered Constraint Solving in the Clang Static Analyzer.
Studia Universitatis Babes-Bolyai: Series Informatica, 63:(2)
pp. 88-101.

[6] Xu, Z., Kremenek, T. and Zhang, J., 2010, October. A
memory model for static analysis of C programs. In
International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation (pp. 535-548).
Springer, Berlin, Heidelberg.

Programming in
Management
and
Orchestration
of Virtualized
Network
Resources

Network Functions Virtualization (NFV) is a new paradigm
for changing the way networks are built and operated.
Decoupling soft- ware implementation from network
resources through a virtualization layer introduces a need
for developing sets of NFV management and orchestration
(MANO) functions. We focus on coordinating management
functions implemented within different functional blocks to
accomplish reliable operation for MANO functions
operating in distributed environments. The challenges are
illustrated on a practical example on Open Stack virtual
technology and on the problems inspired by
telecommunication industry.

Introduction
The purpose of these lecture notes is to introduce the new
concepts, such as Network Functions Virtualization (NFV),
that are currently implemented within complex software
systems and networks, explain the new challenges arising
and show students how to deal with them using the
programming techniques for coordination of management
and orchestration functions of virtualized network
resources operating in distributed environments.

Complex systems
The setting of these lectures is within the theory of
complex systems, in particular, the complex software
systems and complex networks. Hence, the lectures start
with a gentle introduction to the theory, carefully
positioning the considered problems and challenges
within the current evolution of networks and software
systems. Virtualization is a paradigm frequently used in
management of complex software systems. It implies
introduction of a new abstract layer, a virtual edition of
system layer and its functions, which avoids introducing
dependency between system layers.

Management and
orchestration
functions
In telecommunication networks a new paradigm is
introduced, called Network Functions Virtualization (NFV),
that decouples network function from physical network

resources through a new virtualization layer [2]. However,
this introduces a need for developing sets of NFV
management and orchestration functions (MANO). For this
purpose a special working group is defined within the
European Telecommunications Standards Institute (ETSI).
The network function virtualisation management and
orchestration architectural framework is defined in [1]. In
these lecture notes, we focus on the management and
orchestration functions implemented in different functional
blocks, in order to accomplish reliable operation for
management and orchestration functions operating in
distributed environments.

Examples
These notes provide an introduction to the subject, with
the goal of explaining the problems and the principles,
methods and techniques used for their solution. The
worked examples and exercises serve students as the
teaching material, from which they can learn how to use
functional programming to effectively and efficiently
coordinate management and orchestration functions in
distributed complex systems using NFV.

The methods and techniques explained in these lecture
notes, and applied to the problems of management and
orchestration of network virtualization, are already existing
and we claim no originality in that sense. The purpose of
these notes is to serve as a teaching material for these
methods.

The problems and challenges of coordination of
management and orchestration functions are addressed
using the OpenStack platform [3]. It is an open source
cloud operating system which integrates a collection of
software modules that are necessary to provide cloud
computing layered model. Such technology is necessary in
dealing with problems arising from the virtualization
paradigm in current networks, and the students
understanding solutions in OpenStack will be able to
transfer their knowledge to other existing technologies
with the same or similar purpose.

The challenges arising from the new network paradigms,
as well as their solutions, are illustrated through practical
examples using OpenStack virtual technology and inspired
by the problems from the telecommunication industry. All
examples and exercises are worked out in OpenStack
virtual technology.

References
[1] ETSI Industry Specification Group (ISG) NFV: ETSI GS
NFV- MAN 001 v1.1.1: Network Functions Virtualisation
(NFV); Management and Orchestration European
Telecommunications Standards Institute (ETSI), 2014,
https://www.etsi.org/deliver/etsi_gs/NFV- MAN/
001_099/001/01.01.01 60/gs_NFV-MAN001v010101p.pdf,
accessed July 1, 2018

[2] Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network
function virtualization: Challenges and opportunities for
innovations. IEEE Communications Magazine 53(2),  
90–97 (2015)

[3] OpenStack Cloud Software. OpenStack Foundation
(2018), www.openstack.org, accessed July 1, 2018  

Cloud
Computing and
Functional
Programming in
Education
Cloud computing has become a key technology and there-
fore part of many computer science curricula. In
application design, mi- croservices are a key concept. The
functional decomposition intrinsic to microservices could
be well served by serverless platforms, such as AWS
Lambda.

Microservices
More and more practitioners recommend adopting a
microservice architecture when designing cloud
applications [1,2]. Vaguely defined, the microservice
architectural style stands a common set of characteristics:
automated deployment, smart endpoints dumb pipes,
decentralized control of data [2]. Recent efforts to migrate
traditional cloud applications to a microservice architecture
warns of the increased complexity when managing the
many, albeit small, composing services [3]. Here, it is
important to disambiguate: we will focus on orchestration
as the business logic composition of fine-grained cloud
services. Whether their deployment is orchestrated (central
component governing the execution) or choreographed
(each service acts independently) boils down to whether
the desired application needs synchronous control or may
tolerate asynchronous control. However, given that agility
and flexibility are highly desired attributes, a
choreographed deployment is preferable [1].

However, non-functional aspects of microservices, such as
runtime performance, play an important role in the
application deployment.

We therefore plan to familiarize students with the concept
of performance profiling in the cloud in the context of AWS
Lambda. Furthermore, we complement the functional
paradigm of AWS Lambda by using a Haskell framework to
control the experiments.

User-centric cloud
computing
Within the area of cloud computing an important aspect is
assisting users in their decisions. Such decisions speak to
the following questions:

A. How does the application behave on the virtualized
resources?

B. How many virtual resources of what type from which
cloud provider should be acquired for application
deployment?

C. For how long? How much will it cost?

These questions are typically modeled as a scheduling
problem, working under the assumption that there is no a-
priori knowledge about the application. A simple set of

requirements is that the application is successfully
deployed, and the costs are minimized.

The architecture of a
scheduler for a cloud
application
The BaTS scheduler [4] has been developed to assist users
when deploying their applications to the cloud. It takes a
self-scheduling approach to achieve this and it regularly
checks the deployment progress. In a first stage, BaTS
collects statistics from sampling with replacement. Here,
only a small sample is needed (30-50 tasks) to compute the
mean and the standard deviation of the tasks’ runtime on
various cloud offerings. The budget estimation module
then performs linear regression to optimize this phase.

Using the BaTS methodology
on lightweight virtualization
We introduce students to the problem of assisting
application owners looking to select the best choices in
terms of lightweight virtualization when deploying their
application as a set of microservices.

AWS Lambda
The AWS Lambda is a highly light-weight virtualized
compute resource offered by Amazon. The granularity is
function level and the recommended runtime per function
invocation is at most in the order of seconds. It also
assumes a non- blocking behaviour. There are 46 types of
AWS Lambda with a pricing model of euro per GB*sec.

AWS API Haskell
implementation
Based on a comprehensive Haskell implementation of the
AWS API [5], we aim to replicate the BaTS estimation
methodology on lightweight virtualized resources.

Practical work
We instruct the students to relate the performance of
running the factorial on various lambda types by using
sampling and linear regression to plot throughput versus
price efficiency curves. For instance, they should consider
which type has the best throughput for the cheapest price.
Next, they should identify how to efficiently find the most

profitable combination: smallest cost for best perfor-
mance.

Benchmarking AWS Lambda
The AWS Lambda functions run in a container-like
virtualized environment. The amount of compute resources
allocated to the functions is known to be proportional with
the user-requested DRAM memory. To determine how the
Lambda functions can process various workloads, we can
benchmark each of their computational resources
independently: CPU, memory bandwidth, I/O bandwidth,
and network bandwidth and latency. Such
microbenchmarks can be performed by launching, within
the functions, well known compute-, memory-, I/O-, and
network- intensive workloads, such as computing the first
N prime numbers, running the stream benchmark, running
the iozone benchmark, or reading or writing data to AWS
S3.

Transfer of established methodologies is key to education.
As future work, we would like to support Haskell AWS
Lambda functions deployed through the Haskell AWS API
implementation.

References
[1] Newman, Sam. Building Microservices. O’Reilly Media,
Inc., 2015.

[2] Fowler, M., Lewis, J.: Microservices. http://
martinfowler.com/articles/  
microservices.html (March 2014), Last accessed:
15-08-2018

[3] Balalaie, Armin, Abbas Heydarnoori, and Pooyan
Jamshidi. ”Migrating to cloud- native architectures using
microservices: An experience report.” arXiv preprint  
arXiv:1507.08217 (2015).

[4] AM Oprescu. Stochastic Approaches to Self-Adaptive
Application Execution on Clouds. PhD Thesis, Amsterdam,
Vrije Universiteit, 2013.

[5] https://hackage.haskell.org/package/amazonka-
lambda-1.5.0, Last accessed: 15-08-2018.  

Modern type-
safe embedding
of attribute
grammars
Attribute grammars are a powerful, declarative formalism
to implement and reason about programs which, by
design, are conveniently modular. Although a full attribute
grammar compiler can be tailored to specific needs, its
implementation is highly non-trivial, and its long- term
maintenance is a major endeavor. In fact, maintaining a
traditional attribute grammar system is such a big effort
that most systems that were proposed in the past are no
longer active. Our approach to implementing attribute
grammars is to write them as first-class citizens of a modern

functional programming language. We improve a previous
zipper-based attribute grammar embedding making it
non-intrusive (i.e. no changes to the user-defined data
types are required) and type-safe. On top of that, we
achieve clearer syntax by using modern Haskell extensions.
We believe that our embedding can be employed in
practice to implement elegant, efficient, and modular
solutions to real-life programming challenges.

Introduction
Attribute Grammars (AGs) are a declarative formalism
which was proposed by Knuth [7] in the late 60s and allows
one to implement and reason about programs in a
modular and convenient way. A concrete AG relies on a
context-free grammar to define the syntax of a language,
and on attributes associated with the productions of the
grammar to define the semantics of that language. AGs
have been used in practice to specify real programming
languages, like for example Haskell [2], as well as powerful
pretty printing algorithms [16], deforestation techniques
[4], and powerful type systems [11]. When programming
with AGs, modularity is achieved due to the possibility of
defining and using different aspects of computations as
separate attributes.

Attributes are distinct computation units, typically quite
simple and modular, that can be combined into elaborated
solutions to complex programming problems. They can
also be analyzed, debugged, and maintained
independently which eases program development and
evolution.

AGs have proven to be particularly useful to specify
computations over trees: given one tree, several AG
systems such as [14,3,8,17] take specifications of which
values or attributes need to be computed and perform
these computations. The design and coding efforts put into
the creation, improvement, and maintenance of these AG
systems, however, is tremendous which is often an obstacle
to achieving the success they deserve.

An increasingly popular alternative approach to the use of
AGs relies on embedding them as first-class citizens of
general purpose programming languages [12, 9, 13, 15,
18, 1]. This avoids the burden of implementing a totally
new language and associated system by hosting it in state-
of-the-art programming languages. Following this
approach one then exploits the modern constructions and
infrastructure that are already provided by those languages
and focuses on the particularities of the domain specific
language being developed.

Functional zipper [6] is a powerful abstraction which greatly
simplifies the implementation of traversal algorithms
performing a lot of local updates. Functional zippers have
successfully been applied to construct an AG embedding
in Haskell [9,10]. Despite its elegance, this solution had a
major drawback which prevented its use in real-world
applications: attributes were not cached, but rather
repeatedly recomputed which severely hurt performance.
Recently, this flaw has been eliminated [5] and replaced
with a different one: the approach be- came intrusive, i.e.
to benefit from the embedding user-defined data
structures have to be adjusted.

In this paper we present an alternative mechanism to cache
attributes based on a self-organising infinite grid. This
graph is laid on top of the user-defined algebraic data type
(ADT) and mirrors its structure. The used-defined data type
itself remains untouched. The embedding is then based on
two (rather than one) coherent zippers traversing the data
structures in parallel. On top of being non- intrusive our
solution is completely type-safe. Modern Haskell
extensions such as ConstraintKinds allow us to propagate
constraints down in the ADT completely eliminating
runtime type casts present in the previous versions.

Another side benefit of using modern Haskell features is a
cleaner syntax with less code being generated by means of
Template Haskell.

References
[1] Balestrieri, F.: The Productivity of Polymorphic Stream
Equations and The Com- position of Circular Traversals.
Ph.D. thesis, University of Nottingham (2015)

[2] Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of
the Utrecht Haskell compiler. In: Haskell Symposium. pp.
93–104 (2009)

[3] Dijkstra, A., Swierstra, D.: Typing Haskell with an
Attribute Grammar (Part I). Tech. Rep. UU-CS-2004-037,
Institute of Information and Computing Sciences, Utrecht
University (2004)

[4] Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model
and Manipulate Circular Programs. In: Symposium on
Partial Evaluation and Program Manipulation. pp. 102–111.
ACM (2007)

[5] Fernandes, J.P., Martins, P., Pardo, A., Saraiva, J., Viera,
M.: Memoized zipper- based attribute grammars and their

higher order extension. Science of Computer
Programming (2018)

[6] Huet, G.: The zipper. Journal of functional programming
7(5), 549–554 (1997)

[7] Knuth, D.: Semantics of Context-free Languages.
Mathematical Systems Theory 2(2) (June 1968), Correction:
Mathematical Systems Theory 5 (1), March 1971.

[8] Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental
Language-Oriented Tools. In: International Conference on
Compiler Construction. pp. 298–301. Springer-Verlag
(1998)

[9] Martins, P., Fernandes, J.P., Saraiva, J.: Zipper-based
attribute grammars and their extensions. In: Programming
Languages - 17th Brazilian Symposium, SBLP 2013, Brasılia,
Brazil, October 3 - 4, 2013. Proceedings. pp. 135–149
(2013)

[10] Martins, P., Fernandes, J.P., Saraiva, J., Wyk, E.V.,
Sloane, A.: Embedding at- tribute grammars and their
extensions using functional zippers. Science of Computer
Programming 132, 2 – 28 (2016), selected and extended
papers from SBLP 2013

[11] Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative
type inference with attribute grammars. In: International
Conference on Generative Programming. pp. 43–52. ACM
(2010)

[12] de Moor, O., Backhouse, K., Swierstra, D.: First-Class
Attribute Grammars. In: 3rd. Workshop on Attribute
Grammars and their Applications. pp. 1–20. Ponte de  
Lima, Portugal (2000)

[13] Norell, U., Gerdes, A.: Attribute Grammars in Erlang.
In: Workshop on Erlang. pp. 1–12. 2015, ACM (2015)

[14] Reps, T., Teitelbaum, T.: The synthesizer generator.
SIGPLAN Not. 19(5), 42–48 (Apr 1984)

[15] Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-
oriented embedding of attribute grammars. Electronic
Notes in Theoretical Computer Science 253(7), 205–219
(2010)

[16] Swierstra,D.,Azero,P.,Saraiva,J.:Designing and
Implementing Combinator Languages. In: Third Summer
School on Advanced Functional Programming. LNCS  
Tutorial, vol. 1608, pp. 150–206. Springer Verlag (1999)

[17] Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an
Extensible Attribute Grammar System. Electronic Notes in
Theoretical Computer Science 203(2), 103–116 (2008)

[18] Viera, M., Swierstra, D., Swierstra, W.: Attribute
Grammars Fly First-class: how to do Aspect Oriented
Programming in Haskell. In: International Conference on
Functional Programming. pp. 245–256. ACM (2009)  

How Green Is
Your Process?
Like with Bio products, the world is developing to become
a more nature-aware ecosystem. The green initiative
defines two main goals: reduce energy consumption and
use basic natural sources in electrical energy production.

One of the challenges for battery manufacturers is how
long the battery can operate without being continuously
charged. There are many other challenges as well, such as
the size that greatly affects the shape and weight of the
device. The battery is considered to be somewhat lighter
compared to the device that needs a battery to operate.
The challenge here is how to make its size smaller and
lighter weight and certainly a high efficiency in terms of
operating time of the mobile device without being
charged.

On the top of this hardware challenge, a software
challenge exists: the soft- ware itself should support energy
savings. Doing that without limiting the user experience is
considered nowadays as a silent but important goal of
each software development that is targeting any kind of
portable devices [1]. This goal usually emerges when the
related requirements change from untold to important
issue.

Remembering that the energy consumption of any mobile
device is influenced by the running applications through
the usage frequency of services up to the actual mood of
the user, to develop software for such devices is already a
challenge [4]. One could say, the software development
challenge is always the same, but we have to point out
“mobility” as key system property here. Battery power
status also determines the system performance due to
operating system level configuration – well known as
“energy saving preferences”.

It is even harder, if one (in our case the teacher) has to
prepare students for such challenges [6]. All the already
known “best practices” and “energy saving tips” have to be
presented in a context, which is easily comprehensible to
the students.

This can be done by positioning the concepts into a known
environment such as software testing and test automation
[2]. This is what we aim with this tutorial, this is the content
of the upcoming sections, starting with the proposal
followed by examples and closing with further tips on
improvement.

The main focus is on energy consumption of working
software and its development processes, where each
development phase plays a significant role.

Considering any software development process, the
energy is being consumed while problem analysis,
constructing and evaluating the code as well [3]. Software
or hardware tools have to be used to implement energy
consumption monitoring for software run at the top of
selected operating systems and for evaluation of the
energy consumption. Usual usage scenarios are to monitor
energy usage of selected software [5], but we will also take
a look at the possibility to use these tools to measure how
green is the process that produces the final version(s) of
working software.

The examples cover a variety of situations. Starting with the
case of energy profiling of third-party working software in
specific usage scenarios, we point out key properties

(advantages and disadvantages) of existing tools. During
unit testing of code of software being developed, we
present typical usage of energy profiling software.

The ability to scale the measurement approach from
profiling a code snippet or single application to energy
consumption analysis of tool-chains is the last example we
present. This one is presenting a generic approach for
energy profiling and is aimed to replace the question mark
of the tutorial title by a period representing the result
evaluation for each specific case covered by the tutorial.

References
[1] D. Li, W. G. J. Halfond, An investigation into energy-
saving programming practices for android smartphone
app development, in Proc. of the 3rd International
Workshop on Green and Sustainable Software, GREENS
2014, ACM, 2014, pp. 46–53.

[2] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. J. Halfond:
Integrated energy-directed test suite optimization, in Proc.
of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, ACM, 2014, pp. 339–350.

[3] M. Santos, J. Saraiva, Z. Porkolab, D. Krupp: Energy
Consumption Measurement of C/C++ Programs Using
Clang Tooling, in Proceedings of the SQAMIA 2017: 6th
Workshop of Software Quality, Analysis, Monitoring,
Improvement, and Appli- cations, Z. Budimac, ed.,
Belgrade, Serbia, 11-13.9.2017, Paper No. 15, 8 pages,
also published online by CEUR Workshop Proceedings
No. 1938 ISSN 1613-0073.

[4] J.Saraiva,M.Couto,Cs.Szabo,D.Novak:TowardsEnergy-
AwareCodingPractices for Android, Acta Electrotechnica
et Informatica, Vol. 18, No. 1, 2018, pp. 19–25. https://
doi.org/10.15546/aeei-2018-0003

[5] Cs. Szabo, E.M.M. Alzeyani: Measuring Energy
Efficiency of Selected Working Software, Studia
Universitatis Babe ş-Bolyai Informatica, Vol. 63, No. 1,
2018, pp. 5–16. https://doi.org/10.24193/subbi.2018.1.01

[6] Cs. Szabo, J. Saraiva: Focusing software engineering
education on green application development, in
Conference of Information Technology and Development
of Education – ITRO 2017, Novi Sad, Serbia, pp. 165–169,
ISBN 978-86-7672-302-7.

Functional
Programming
of Devices

Notice
This paper will be an extended version our RWDSL18
contribution [2]. In the current paper we will use the same
DSL, only some minor extensions and improvements are
done. The current paper will focus on how the mTask DSL
can be use to program the IoT and will discuss a high-level
simulator for mTask programs as an iTask program. on to
simulate .

Introduction
Many devices are nowadays equipped with a simple
microprocessor to control their behaviour. Typical
examples are thermostats, light bulbs, electric sockets, fire
alarms, door openers and so on. When these devices can
communicate with each other, or some remote computer,
they are said to be part of the Internet of Things, IoT. The
microcomputers in these devices are very affordable and
becoming omnipresent. Expensive devices like cars and
apparatus with a very complex task are equipped with a
full-fledged embedded computer and appropriate
software. For most small and relatively cheap IoT devices
such an embedded computer is too expensive, or
consumes too much energy; a simple and cheap
microprocessor is used to execute the software. These
systems have very limited computing power and memory,
typically 30 KB to 4 MB flash memory to store the program.
The life of this memory is restricted to 1000 write cycles. To
store variables, the heap and the stack the systems have 2
to 40 KB of RAM.

The processor speed and memory limitations exclude the
use of an operating system. The apparatus just executes
the program controlling the device. Even the control
programs on these IoT devices consist of several tasks. For
instance, to check the state of a button ten times a second,
to update a display every second, to measure the
temperature two times a minute, and to switch the heating
after at least five minutes unless the button is pressed
earlier. Due to the different time frames and the
dependencies of these tasks, the control program tends to
become rather messy, independent of the programming
language used. Moreover, the IoT devices execute
separate programs for the rest of the application in the IoT
and the communicate using a plethora of protocols. This
makes the development and maintenance of IoT
applications complex and error prone.

Task Oriented Programming, TOP, offers lightweight
threads that can easily be composed to more complex
tasks. Tasks are evaluated step-by-step and can inspect the
current value of other tasks after such a step. TOP is first
implemented in the iTask system [4,5] embedded in Clean
[6]. In the iTask system, primitive tasks are gathering input
via automatically generated web-form or by collecting data
from other programs and data stores. A powerful set of

combinators is used to compose tasks to more complex
tasks. In this paper, we show that TOP is very suited for
programming IoT devices. Primitive tasks deliver the
current value of inputs and sensors. Constructors very
similar to the iTask system are used to combine tasks to
more complex tasks.

IoT devices typically have loosely dependent tasks that
control the sensors, actuators and communication of the
devices. Programming this in a TOP style offers concise
programs. Executing these tasks within the constraints of
small microcontrollers with very limited processing power
and some KBs of RAM memory deserves some thought.
Due to the severe limitations of the microcontrollers used
we cannot port the iTask system to the IoT devices since a
typical iTask program requires about 100 MB of heap
space. We define an embedded Domain Specific
Language, eDSL, called mTask for the IoT devices. This
eDSL is embedded in the iTask system since we plan to
make these TOP languages fully interoperable.

The contributions of this paper will be:

• This paper introduces a task-based functional
programming language for IoT devices. Compared with
our previous language for microprocessor programming
[3] the imperative peripheral control is replaced by
referential transparent constructs.

• We demonstrate how make a functional extendable,
multi-view, type-safe, embedded DSL. This is a tag-less
eDSL [1].

• The generated code runs on small and slow devices as
well as on bigger machines and a simulated machine.

• Due to the use of Arduino C++ as the intermediate
language, this functional eDSL runs on many different
microcontrollers.

• The high-level simulation of mTask programs in an iTask
program offers the possibility to view the effect of the
eDSL program and to manipulate the simulated
environment to experiment with the specified behavior.
In such a simulator it is much easier to manipulate the
time and the sensors than in a real-life setup, e.g., we can
change the temperature reported by a sensor by the

push of a button instead of physically expose the IoT
device to those temperatures.

References
[1] Carette, J., Kiselyov, O., Shan, C.c.: Finally tagless,
partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program. 19(5) (Sep 2009).
https://doi.org/10.1017/S0956796809007205

[2] Koopman, P., Lubbers, M., Plasmeijer, R.: A task-based
dsl for microcomputers. In: Proceedings of the Real World
Domain Specific Languages Workshop 2018. pp. 4:1–4:11.
RWDSL2018, ACM, New York, NY, USA (2018). https://
doi.org/10.1145/3183895.3183902, http://doi.acm.org/
10.1145/ 3183895.3183902

[3] Koopman, P., Plasmeijer, R.: A shallow embedded type
safe extendable dsl for the arduino. In: Revised Selected
Papers of the 16th International Symposium on Trends in
Functional Programming - Volume 9547. pp. 104–123. TFP
2015, Springer-Verlag New York, Inc., New York, NY, USA
(2016), http://dx.doi.org/ 10.1007/978-3-319-39110-6_6

[4] Plasmeijer, R., Achten, P., Koopman, P.: iTasks:
executable specifications of inter- active work flow systems
for the web. In: Hinze, R., Ramsey, N. (eds.) Proceedings of
the ICFP’07. ACM, Freiburg, Germany (2007)

[5] Plasmeijer, R., Lijnse, B., Michels, S., Achten, P.,
Koopman, P.: Task-oriented programming in a pure
functional language. In: Proceedings of the 14th
Symposium on Principles and Practice of Declarative
Programming. pp. 195–206. PPDP ’12, ACM, New York, NY,
USA (2012). https://doi.org/10.1145/2370776.2370801,
http://doi.acm.org/10.1145/2370776.2370801

[6] Plasmeijer, R., van Eekelen, M., van Groningen, J.:
Clean language report (version 2.2) (2011), http://
clean.cs.ru.nl/Documentation  

Code
Comprehension
with
CodeCompass

Overview
Development and maintenance are two separate stages
with differ- ent characteristics, thus they require different
tooling support as well. During development we are mainly
writing new code which requires tooling support like code
completion, brace matching, etc. and usually only a few
files involved more or less on the same abstraction level.
During maintenance we are mainly reading and navigating

through an existing code base among the large number of
modules and files on different abstraction levels [1]. In
development the intentions are clear, as opposed to code
comprehension where the task is to recover the original
purpose of certain code fragments.

In industrial environment [2] a project may consist millions
lines of code. For long existing large systems, where the
code base has been developed and maintained for
decades by fluctuating teams, original intentions are lost,
the documentation is untrustworthy or missing, the only
reliable information is the code itself. Comprehension of
such large software systems is an essential, but usually very
challenging task. This implies that tooling support is
needed [3].

When getting familiar with an unknown source code, the
first step is to find the relevant parts of the system. This
process requires fast feature localization, based on some
named entities acquired from log messages or other
resources. The next step is to extend our knowledge about
the system through diagrams, function call chains, etc. And
in the end we would like to verify the gathered knowledge
through version control messages, architectural
information and references on related modules.

CodeCompass
CodeCompass [4, 5] is an open source code
comprehension frame- work. It provides a pluginable
architecture in order to enable the addition of various
analyzer tools which produce different visualizations,
information collectors, metrics [6], etc. The most important
design goal was to scale CodeCompass for large scale
industrial projects.

In the first step the product has to be parsed: all the
information is collected and stored to a database which
then enables the service layer to provide the required
visualizations. For fast searching CodeCompass uses text
indexing that results language-independent navigation in
the source code. As the primary tar- get is to give accurate
information about language elements, identifying symbols
by their name is not sufficient. We use the LLVM compiler
infrastructure to identify symbols precisely, and to resolve
named entities using the abstract syntax tree.
CodeCompass is extended by parsers of languages. The
most supported languages are C/C++, but Java and
Python are partially handled as well.

Besides the named symbols some additional information is
also stored in the database, such as relations between AST
nodes (function calls, inheritance) and files (interface
provider relation, inclusion, etc.). These are used for
displaying an architectural level picture about the system
based on the symbols’ usage [7].

The code base is not the only source of documentations.
The commit mes- sages of a version control system also
contain information which is important to understand why
certain changes happened at the given module.
CodeCompass reads the Git repository too, if any.
CodeCompass is also equipped with advanced
functionalities. It can display the compiler generated
functions, that are missing from the source. Pointer analysis
helps to understand which variables are referring the same
object. We can inspect the function call relations even if
those invoked via a virtual function or a function pointer.

Summary
Code comprehension requires specific tool support for
understanding large-scale software. We overview and
categorise code comprehension tools by architecture and
functionalities in order to examine their capabilities.

We introduce CodeCompass which presents a wide range
of functionalities about visualizations, information
providing, version control and documentation collection,
metrics, etc.

References
[1] Jonathan Sillito, Gail C. Murphy, Kris De Volder. (2008).
Asking and Answering Questions during a Programming
Change Task. IEEE Transactions on Software Engineering,
VOL. 34, NO. 4, July/August 2008.

[2] Porkolab, Zoltan & Brunner, Tibor & Krupp, Daniel &
Csordas, Marton. (2018). Codecompass: an open software
comprehension framework for industrial usage. 361- 369.
10.1145/3196321.3197546.

[3] Nathan Hawes, Stuart Marshall, Craig Anslow. (2015).
CodeSurveyor: Mapping LargeScale Software to Aid in
Code Comprehension. 2015 IEEE 3rd Working Conference
on Software Visualization (VISSOFT) , 27-28 Sept. 2015.

[4] Porkolab,Zoltan & Brunner,Tibor (2018). The
codecompass comprehension framework. 393-396.
10.1145/3196321.3196352  

[5] CodeCompass, https://github.com/Ericsson/
CodeCompass. Last accessed 5 Nov 2018.

[6] Brunner, Tibor & Porkolab, Zoltan. (2017). Two
Dimensional Visualization of Soft- ware Metrics.
Proceedings of the Sixth Workshop on Software Quality
Analysis, Monitoring, Improvement, and Applications.

[7] B. De Alwis and G.C. Murphy. (1998). Using Visual
Momentum to Explain Dis- orientation in the Eclipse IDE.
Proc. IEEE Symp. Visual Languages and Human Centric
Computing, pp. 51-54, 2006.

Functional
Programming
Skeletons for
High-
Performance
Computing

Functional programming languages provide tools and
features for designing and implementing distributed
application. As functional programs have inherent parallel
features, it can be exploited to obtain reliable concurrent
processing by high level distribution and coordination.

The state-of-the-art parallel software development made
extensive usage of various methodologies and approaches
to obtain high speed up. However, concurrency remains
one of the most difficult domains especially in the case of
functional programming approaches.

The main purpose is to explore parallel computation
skeletons in a new environment, to illustrate the
appropriateness and applicability of FP in novel distributed
computation setups. A set of known parallel algorithmic
skeletons are tested as HPC components. Significant
number of examples provide high speed-up. The amount
of parallelism always depends on many factors such as: the
computation pattern applied, refined granularity, semantics
of distributed nodes, data streaming. Examples inspect
both the well modelled coordination and the semantical
soundness.

Application domains
for skeletons
Coordination
The specific topic of the distributed and parallel functional
computation requires coordination language elements.
The research questions addressed earlier were concerned
about how the parallel behavior and the communication of
functional programs can be obtained at higher levels. The
introduced functional program- ming language elements
with higher abstraction level proved to be feasible for
parallel, high level, data intensive computations [2].

The followed directions resulted in increased expressing
power of language elements for parallelism in functional
programs. More specifically, it conducted to the design of
a language extension DClean for the distributed
programming and coordination of the Clean functional
programs. The extension consists of high-level language
elements coordinating pure functional computational
nodes in the designed distributed environment on clusters.

The constructs generate computation boxes connected via
buffered communications channels. Using DClean
programmers indicate how the distributed computation
pattern is organized into a generated distributed graph,
and they control data-flows of the process-network by
typed channels. The language offers the advantage of
writing distributed and functional applications without
being acquainted with details of the multi-layered
environment and middleware services’ technical aspects.
Work distribution is made according to a predefined
parallel computational scheme, algorithmic skeleton,
parameterized by functions, types and input streams.

The main purpose of introducing the coordination
language was to define functional parallel computation
skeletons. In a large number of examples high speed-up
for parallelism was obtained. The actual amount of
parallelism was subject to channel creation order, the
amount of work on them, the speed of retrieving and
storing data, and the complexity of the nodes [1].

The graphical visualization of the distributed computation
by the support of executable semantics code
comprehension tool [4] was indispensable in real
distributed applications.

This depicted the expected parallelism on boxes and on
channels generated using well-defined high-level
skeletons. It aimed at modeling and formulating properties
of operational semantics of the DClean [3].

Cyber physical systems
The skeleton based functional modeling approach used by
the coordination languages is applied to the nowadays
fashionable CPS systems’ prototypes as well. Studying
relationships between CPS and distributed systems, or CPS
and embedded systems are important for taking adequate
decisions in the design and modeling steps of the
sophisticated CPS systems’ prototype.

The CPS system case studies implemented [5] describe the
collaborating computational units controlling physical
entities (sensors) and the relationships with other complex
systems. The smarthouse CPS system establishes novel
aspects, features and approaches in a general prototyping
using skeletons. In such CPS system design important
semantics questions are addressed from probabilistic and
behavioral viewpoints, where the interoperability is the
specific, main feature to analyze and specify.

Skeletons for high
performance
computations
Research on extending the applicability of skeletons in
high-performance computing environment is the key point
in the parallel fp approach. Adapting the earlier know-how
about skeleton programming of heterogeneous multicore
systems results in higher speed-ups, where the
measurements and the comparisons evaluate the novel
parallelisation processes.

The skeleton prototypes are defined in terms of their
functionalities and coordinations. The case studies illustrate
the connections with other type of distributed systems,
which are important due to the multi-layered structure of
them. The distributed system properties given in
executable ways are tested by skeletons of functional and
distributed programming of clusters and grids.

References
[1] Zsok V.: D-Clean Semantics for Generating Distributed
Computation Nodes, Work- shop on Generative
Technologies, WGT 2010, Satellite workshop at ETAPS
2010, Paphos, Cyprus, March 27, 2010, pp. 77–84.

[2] Zsok V., Hernyak Z., and Horvath, Z.: Designing
Distributed Computational Skeletons in D-Clean and D-
Box. Central European Functional Programming School
CEFP 2005, First Summer School, Budapest, Hungary, July
4-15, 2005, Revised Selected Lectures, LNCS Vol. 4164,
Springer-Verlag, 2006, pp. 223–256.

[3] Zsok V., Koopman, P., Plasmeijer, R.: Generic Executable
Semantics for D-Clean, Proceedings of the Third Workshop
on Generative Technologies, WGT 2011, ETAPS 2011,
Saarbrucken, Germany, March 27, 2011, ENTCS Vol. 279,
Issue 3, Elsevier, December 2011, pp. 85–95.

[4] Zsok V., Porkolab Z.: Rapid Prototyping for Distributed
D-Clean using C++ Tem- plates, Annales Universitatis
Scientiarum Budapestinensis de Rolando Eotvos
Nominatae, Sectio Computatorica, Eotvos Lorand
University, Budapest, Hungary, 2012, Vol. 37, pp. 19–46.  

[5] Zsok V. et al.: Modeling CPS Systems using Functional
Programming, Proc. of IFL17, Uni. of Bristol, pp. 168–174.  

	FE3CWS
	The three “co” winter school material
	Table of contents
	References
	Overview
	Clang Static Analyzer
	CodeChecker
	Summary
	References
	Introduction
	Complex systems
	Management and orchestration functions
	Examples
	References
	Microservices
	User-centric cloud computing
	The architecture of a scheduler for a cloud application
	Using the BaTS methodology on lightweight virtualization
	AWS Lambda
	AWS API Haskell implementation
	Practical work
	Benchmarking AWS Lambda
	References
	Introduction
	References
	References
	Notice
	Introduction
	References
	Overview
	CodeCompass
	Summary
	References
	Application domains for skeletons
	Coordination
	Cyber physical systems
	Skeletons for high performance computations
	References

