
FE3CWS 

AMSTER-
DAM 
TEACHER 
TRAINING 
MATERIAL 
Intellectual output 2 of the 
ERASMUS+ project 2017-1-SK01-
KA203-035402



Some words about the 

Contents 
• 6 topics related to software 

composition, comprehension and 
correctness 

• Available in 7 languages: English, 
Hungarian, Slovak, Croatian, 
Romanian, Bulgarian and 
Portuguese

© European Union, 2017-2019 

The information and views set out in this publication are those of 
the author(s) and do not necessarily reflect the official opinion of 
the European Union. Neither the European Union institutions and 
bodies nor any person acting on their behalf may be held 
responsible for the use which may be made of the information 
contained therein.



Table of contents

1. User-centric Cloud Computing in Education 

2. Focusing Education on Energy Efficiency 
Measurements During Software Testing 

3. Towards an Engineering Discipline for Green Software 

4. Teaching Task Oriented Programming 

5. An Interactive Approach to Coloured Petri Nets 
Teaching 

6. CodeCompass: an Extensible Code Comprehension 
Framework



User-centric 
Cloud 
Computing in 
Education 
Cloud computing has become a key technology and 
therefore part of many computer science curricula. User-
centric research focuses on strategies for estimating 
runtimes and costs for deploying real-world applications 
on the cloud. 

Within the area of cloud computing an important aspect is 
assisting users in their decisions. Such decisions relate to 
the following questions: 

– How does the application behave on the virtualized 
resources? 

– How many virtual resources of what type from which 
cloud provider should be acquired for application 
deployment? 

– For how long? How much will it cost? 

These questions are typically modeled as a scheduling 
problem, working under the assumption that there is no a-
priori knowledge about the application. One typical, 
simple set of requirements is that the application is 
successfully deployed, and the costs are minimized. 

The architecture of 
a scheduler for a 
cloud application 
The BaTS scheduler [4] has been developed to assist users 
when deploying their applications to the cloud. It takes a 
self-scheduling approach to achieve this and it regularly 
checks the deployment progress.



If a budget violation is expected, more profitable 
machines (better price/performance ratio) are acquired. If 
a makespan violation is expected, more faster machines 
are acquired. 

Using the BaTS 
methodology on AWS 
resources 
We introduce the problem of assisting application owners 
looking to select the best choices in terms of virtualized 
resources when deploying their application on Amazon 
EC2 (AWS) [7] resources. 

The optimized sampling 
phase 
The main idea is to use the average execution time for 
each virtualized resource type to compute budget and 
makespan estimates.

Figure 1 depicts the architecture of BaTS. During the 
sampling phase, BaTS collects statistics on the runtimes of 
some of the application’s tasks, using sampling with 
replacement. Here, only a small sample is needed (30-50 
tasks) to compute the mean and the standard deviation of 
the tasks’ runtime on various cloud offerings. Linear 
regression is used to optimize the computation of budget 
and makespan estimates. 

During the execution phase, at regular time intervals, the 
current configuration is re-evaluated, to check whether the 
selected schedule is still feasible.



However, obtaining these statistics may incur significant 
costs given the many types of AWS EC2 offerings (currently 
123 [8]). Figure 2 shows randomly selected tasks from an 
application where tasks’ runtimes follow some distribution. 
The runtimes of these tasks are used to compute the 
statistics for one cloud offering. After collecting the 
statistics for every available cloud offering, we may 
compute the budget and makespan estimates. Assuming 
that we would like to evaluate every current AWS EC2 
offering, that would mean executing 30 tasks on each of 
the 123 machine types. If we would simply execute 
different sets of randomly selected tasks (in total 3690), it 
would lead to a long (and costly) sampling phase, possibly 
rendering any user decision irrelevant for two reasons: a) 
there are too few tasks left to be executed, and b) the user 
budget might be already exceeded. If we would execute 
the same set of randomly selected on each machine type, 
it would still lead to a long (and costly) sampling phase. 

We optimize this phase by using linear regression to 
reduce the total number of tasks that need to be executed 
before preparing statistics. We execute the same set of 7 
randomly selected tasks on each machine type and collect 
runtimes [9]. 

Next, we execute 23 randomly selected tasks on the 
machines that first become available. Figure 3 illustrates 
our approach. Using the runtimes of the replicated 7 tasks 
we establish a linear relationship between execution times 
for the tasks of the application across all machine types. 
We use these linear relationships to then map the 23 
runtimes to all other machine types. Once the mapping is 
finished, we have a set of 30 runtimes for each machine 
type, while only executing 884 tasks instead of 3690. 

Different orders of 
magnitude in pricing 
Once the runtime estimates are obtained, the budget and 
makespan estimates are computed using a modified 
Bounded Knapsack algorithm [11]. However, when 
considering AWS EC2 resources with a different pricing 
model, such as spot instances, this approach does not 
scale due to the different orders of magnitude.  

To address this issue, we traded the determinism of the 
Bounded Knapsack approach for the scalability of a 
genetic algorithm approach [12].



Using a genetic algorithm, we could approximate the 
Pareto front (optimal set) of feasible schedules for a given 
application and a given set of machine types. Figure 4 
shows the real Pareto front and two estimates for an 
application having a multi-modal distribution of task 
runtimes. Our solution generates accurate Pareto fronts 
within 1 second. 

The key finding here was that to ensure a good coverage 
of the real Pareto front, the fitness function should also 
reward fastest/cheapest makespan. 

The tail phase of the 
computation 
In the final phase of the computation, the underlying 
assumption that computing time is “fluid” needs to be 
addressed [10]. At this point, by definition, the application 
contains too few tasks for the assumption to hold. We 
analyzed several approaches to address this problem, 
focusing on better estimating the final computation needs 
of the application, such that the allocation of the final tasks 
to machines would be optimal. Our approaches ranged 
from perfect knowledge of remaining runtimes to zero-
knowledge (random runtimes). The impact was 

insignificant. Therefore, the problem needed to be 
addressed at a different stage, namely at the budget and 
makespan estimation phase. 

To that end, BaTS keeps track of the estimated unused final 
accountable time units fractions. BaTS provisions a cushion 
to address outliers running outside the final accountable 
time unit and adds virtualized resources and/or time to the 
schedule. However, outliers may still lead to violations. 

Using the BaTS 
methodology in education 
In the University of Amsterdam’s Master of Computer 
Science curriculum the course ”Web services and cloud-
based systems” has been taught for several years. One 
important goal of this course is to familiarize students with 
the challenges of cloud-based systems. The practical work 
for this course entails developing a rudimentary scheduler 
for virtualized resources and analyzing its behaviour in an 
in-house setting versus a commercial cloud one. The in-
house setting consists of an OpenNebula [5] deployment 
on DAS [6], the Dutch national computing cluster.



OpenNebula is an open source solution for Infrastructure-
as-a-Service deployments: physical resources are 
managed and offered as virtual resources. Here, students 
have an upper limit on the number of virtual machines that 
can be fired up concurrently. 

The commercial cloud setting consists of the Amazon EC2 
[7] cloud offerings. Here, the students have a budget they 
can use for any lab-related resource acquisition. The 
assessment of their lab work takes into account any 
budget violations. 

In general, the outcome of the lab work showed that 
students were able to understand the difference between 
best-effort and commercial virtual resource acquisition. 
They usually developed schedulers driven by profitability, 
while the best performing students developed more 
sophisticated schedulers where the users could select 
from several policies: fastest, cheapest, most profitable.



References 
[1] Newman, Sam. Building Microservices. O’Reilly Media, 
Inc., 2015. 

[2] Fowler, M., Lewis, J.: Microservices. http://
martinfowler.com/articles/microservices.html (March 
2014), Last accessed: 15-08-2018 

[3] Balalaie, Armin, Abbas Heydarnoori, and Pooyan 
Jamshidi. ”Migrating to cloud-native architectures using 
microservices: An experience report.” arXiv preprint arXiv:
1507.08217 (2015). 

[4] AM Oprescu. Stochastic Approaches to Self-Adaptive 
Application Execution on Clouds. PhD Thesis, Amsterdam, 
Vrije Universiteit, 2013. 

[5] https://opennebula.org/, Last accessed: 15-11-2018. 

[6] https://www.cs.vu.nl/das5/, Last accessed: 15-11-2018. 

[7] https://console.aws.amazon.com/ec2/v2/home, Last 
accessed: 15-11-2018.

Conclusion & Future 
Work 
Stochastic approaches for user-centric cloud scheduling are 
promising. Embedding research in education as soon as it 
reaches some stable state is very important. 

As future work, we would like to support Haskell AWS 
Lambda functions deployed through the Haskell AWS API 
implementation.



[8] https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/instance-types.html, Last accessed: 15-11-2018. 

[9] A.-M. Oprescu; T. Kielmann; H. Leahu, Budget 
estimation and control for bag-of-tasks scheduling in 
clouds, 2011, Parallel Processing Letters, vol. 21. 

[10] A.-M. Oprescu; T. Kielmann; H. Leahu, Stochastic tail-
phase optimization for bag-of-tasks execution in clouds, 
2012, Proceedings of the 2012 IEEE/ACM Fifth 
International Conference on Utility and Cloud Computing. 

[11] A.-M. Oprescu; T. Kielmann; Bag-of-tasks scheduling 
under budget constraints,2010, IEEE Second International 
Conference on Cloud Computing Technology and Science 
(CloudCom). 

[12]. A. Vintila; A.-M. Oprescu; T. Kielmann; Fast (re-) 
configuration of mixed on-demand and spot instance 
pools for high-throughput computing, 2013, Proceedings 
of the first ACM workshop on Optimization techniques for 
resources management in clouds.



Focusing 
Education on 
Energy 
Efficiency 
Measurements 
During 
Software 

Testing 
The mission of software engineering teachers is to prepare 
future software engineers who can master every problem 
during the whole software life cycle. Besides skills related 
to comprehension of stakeholders’ needs and to 
composition of corresponding working software, the ability 
to check correctness of the results plays also a significant 
role. 

In this paper, we focus on the latter set of skills. We focus 
on testing, where the level of automation is less important. 
We emphasize the measurement nature of testing, more 
precisely, we focus on software energy consumption 
measurement that can be provided during testing at 
different levels. All these aspects are presented from the 
point of view of a software engineering educator, with the 
aim to present how to set up a software engineering lab 
session that focuses on energy efficiency measurement 
during software testing and, with the authors’ comments 
on this proposal.



Problem definition 
One of the challenges for battery manufacturers is how 
long the battery can operate without being continuously 
charged, and of course there are many other challenges 
such as the size that greatly affects the shape of the device, 
and the other factor which is an important feature of the 
battery is the weight of the identifier. The battery is 
considered to be somewhat lighter compared to the 
device that needs a battery to operate. The challenge here 
is how to make its size smaller and lighter weight and 
certainly a high efficiency in terms of operating time of the 
mobile device without being charged. 

On the top of this hardware challenge, its software 
challenge brother exists, namely that the software itself 
should support energy savings. Doing that without limiting 
the user experience is considered nowadays as a silent but 
important goal of each software development that is 
targeting any kind of portable devices. 

Remembering that the energy consumption of any mobile 
device is influenced starting with the running applications 

through the access level of basic services up to the actual 
mood of the user, to develop software for such devices is 
already a challenge [1]. One could say, the software 
development challenge is always the same, but we have to 
point out “mobility” as key system property here. Battery 
power status also determines the system performance due 
to operating system level configuration – well known as 
“energy saving preferences”. 

It is even harder, if one (in our case the teacher) has to 
prepare students for such challenges. All the already 
known “best practices” and “energy saving tips” have to be 
presented in a context, which is easily comprehensible to 
the students.  

This can be done by positioning the concepts into a known 
environment suchas software testing and test automation 
[2], in our case. This is what we aim with this paper, this is 
the content of the upcoming sections, starting with the 
proposal followed by an evaluation and closing with 
further tips on improvement.



Solution proposal 
As it was stated above, we have to find the best suitable 
environment to introduce energy consumption 
measurement [3] and energy efficiency evaluation 
practices. 

It could be both initial software development and software 
evolution as well, as both development phases of the 
generic software life cycle offer opportunities to measure 
the product being developed/evolved [4]. 

With the choice of initial software development, the benefit 
is that all activities could get a focus on energy saving 
related issues, while choosing the software evolution 
alternative offers the possibility to evaluate the 
improvement in the product implementation. On the other 
hand-side, software evolution requires the existence of a 
working software at its beginning, while initial software 
development is the process that creates the product 
starting with the first requirement on the software. 

Putting the two possible approaches into the teaching 
environment, the best option would be to use both. One 

semester for initial development of software and another 
one for the evolution of the same software. Usually the 
teacher does not have two semesters in a row to present 
the course contents in the way presented in the previous 
paragraph. This is the reason why we have to decide which 
kind of development to use to introduce the selected 
practices. From the point of view of the development 
process architecture, and by the fact that initial 
development could be also evolutionary, we decide for 
software evolution. It includes many activities of initial 
development (except early requirement gathering and 
analysis) and emphasizes the importance of testing and 
evaluation. 

This choice allows the teacher to: 

– Let students look back in their development history (past 
projects) to be critical to themselves. 

– Let them evaluate their results using code metrics and 
energy consumption measurement (or estimation). 

– Let them integrate the above activities into the standard 
verification & validation processes of software evolution.



Programming language of the development is not 
important, therefore the student can select any of their 
previous project for the evolution – or all of them, if they 
are competing in the number of evolved projects or 
programming languages used. But, programming 
language usually determines or limits the development 
environment and tools used. The selection of these tools 
and their plug-ins also offers a good support for code 
metrics evaluation. Energy consumption measurement and 
energy efficiency evaluation usually requires a different 
tool, as there are only few development environment that 
integrate energy consumption measurement or estimation 
by now. Regarding testing as measurement basis, we have 
to note that static code analysis is used to be a part of 
testing of software. Besides that, selected parts of the 
application code base are being executed during white 
box testing (mainly unit testing), which by a small extension 
of energy consumption measurement can present the 
energy consumption of the test case – an indirect look at 
energy consumption of the tested code. During black box 
testing, the complete application is being tested using test 
scenarios. These test scenarios are mainly comparable to 
intended all-day use cases of the software, others 
represent the borderline scenarios – including the ones 
when the user is in bad mood. Measuring energy 

consumption of the execution of these black box tests then 
gives an approximate (but direct) look at energy 
consumption of the product. 

Here is the main benefit of evolution (when compared to 
initial software development). The teacher can prepare the 
starting version for the evolution, including code that can 
be improved, list of known bugs and the test base! The 
existence of test for retesting and regression testing is very 
important here as the productivity of evolution can be 
increased by this feature. 

Assuming all above steps were made, the integration of 
energy efficiency measurements into the process of testing 
look from the student’s perspective of activities as follows: 

1. Select the product that could be your past project or 
from a repository. 

2. Evaluate it using static code analysis, testing, energy 
measurement, usability survey, etc. 

3. Improve it (different kinds of evolution such as add/
change functionality, repair or adapt) 

4. Retest to be sure you eliminated a defect or fault



5. Regression test (including re-evaluation) 

6. Conclude results (make a final verdict across all available 
data, including energy efficiency). 

Discussion 
As energy consumption measurement is relatively new 
compared to other techniques such as static code analysis, 
black/white box testing and debugging, it might be the 
point of failure. But if it gets combined with these elder 
principles building a composite score for each student, the 
critical property is much lower. 

Looking at the possibilities of grading, we can find various 
“levels of freedom”, which offer themselves to be used 
separately or as part of a grade composition: 

1. number of different projects, 

2. number of programming languages applied/used, 

3. code quality of the final product, 

4. energy efficiency of the final product, 

5. code quality improvement during software evolution, 

6. energy efficiency improvement during software 
evolution. 

Considering all “levels of freedom” of task completing, 
many competitions could be defined for the competitive 
students, while the achievers will collect the “small 
victories” in number of projects, the perfectionists’ goal will 
be to optimize all code metrics and minimize energy 
consumption. For the average student, improvement of 
energy efficiency and code comprehensibility could be the 
achievable goal. 

Student competition can be even more supported by not 
letting them return to their past projects, but allowing them 
to choose from a selected repository. 

Like with computer games, all game levels are then equally 
available to everyone.  

To support equity as well, a common public forum of 
students and teachers could be also created. 



Our future work in this area will focus on configuration of a 
portable integrated development, testing and energy 
consumption estimation environment. 

This environment will be used in the frame of software 
evolution or initial development subjects to support 
education on energy efficiency measurement during 
software testing. It might limit students’ creativity by 
offering a semi-closed sandbox, as hardware plays a very 
important role by the current architecture of energy 
consumption estimation. Some research aims to break this 
limitation – we are looking forward to those results to get 
them also integrated. 

References 
[1] J. Saraiva, M. Couto, Cs. Szabo, D. Novak: Towards 
Energy-Aware Coding Practices for Android, Acta 
Electrotechnica et Informatica, Vol. 18, No. 1, 2018, pp. 19–
25. https://doi.org/10.15546/aeei-2018-0003 

[2] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. J. Halfond: 
Integrated energy-directed test suite optimization, in Proc. 
of the 2014 International Symposium on Software Testing 
and Analysis, ISSTA 2014, ACM, 2014, pp. 339–350. 

[3] M. Santos, J. Saraiva, Z. Porkolab, D. Krupp: Energy 
Consumption Measurement of C/C++ Programs Using 
Clang Tooling, in Proceedings of the SQAMIA 2017:6th 
Workshop of Software Quality, Analysis, Monitoring, 
Improvement, and Applications, Z. Budimac, ed., Belgrade, 
Serbia, 11-13.9.2017, Paper No. 15, 8 pages, also 
published online by CEUR Workshop Proceedings No. 
1938 ISSN 1613-0073. 

[4] Cs. Szabo, J. Saraiva: Focusing software engineering 
education on green application development, in 
Conference of Information Technology and Development 
of Education – ITRO 2017, Novi Sad, Serbia, pp. 165–169, 
ISBN 978-86-7672-302-7.



Towards an 
Engineering 
Discipline for 
Green 
Software  
This technical report describes the research developed at 
the Green Software Laboratory at Coimbra and Minho 
Universities, which was presented at the first teachers 
training meeting of the Erasmus+ project “Focusing 
Education on Composability, Comprehensibility and 
Correctness of Working Software”. It presents both a green 

ranking for programming languages and data structures, 
and techniques to locate abnormal energy usage in 
software systems.  

Motivation  
The current widespread use of non-wired but powerful 
computing devices, such as, smartphones, laptops, etc., is 
changing the way both computer manufacturers and 
software engineers develop their products. In fact, 
computer/software execution time, which was the primary 
goal in the last century, is no longer the only concern. 
Energy consumption is becoming an increasing bottleneck 
for both hardware and software systems. As a 
consequence, research on green software is a relevant and 
active area of research.  This report briefly describes the 
research that is being developed in green software in the 
Green Software Laboratory (GSL). GSL consists of various 
Portuguese research groups, including two sites of the 
project “Focusing Education on Composability, 
Comprehensibility and Correctness of Working Software”. 
GSL is an initiative to develop techniques and tools aiming 
at reducing energy consumption across various computing 
systems (mobile, programs, databases, etc.).



GSL specifically focus on the software side, where it applies 
(source code) analysis and transformation techniques to 
detect anomalies in energy consumption and to define 
optimizations to reduce such consumption.  

In the last century efficiency of a software system was 
mainly focused on execution time and memory 
consumption efficiency. Nowadays, software developers 
often ask the question “is a faster program also a greener 
program?”. There are many aspects of a software system 
that influences its energy performance: the programming 
language and its execution model (compiled to binary 
code or to a virtual machine, interpreted code, lazy versus 
strict evaluation, use of runtime partial evaluation, etc). The 
efficiency of the memory model and language libraries 
also influence performance. The complexity of the 
algorithm used to implement the desired computer 
problem, also influences performance: if the implemented 
algorithm has to do more work than what is strictly needed, 
then, more CPU and energy will be used.  

In this document we briefly report the research results 
achieved in the GSL, namely in analyzing the energy 
efficiency of programming languages (Section 2), data 
structure libraries (Section 3), and of software’s source 
code (Section 4).  

Greenness in 
Programming 
Languages  
An interesting question that arises when discussing energy 
in programming languages is whether a faster language is 
also an energy efficient language, or not. Comparing 
software languages, however, is an extremely complex 
task, since the performance of a language is influenced by 
the quality of its compiler, virtual machine, garbage 
collector, etc. In the Green Software Laboratory we studied, 
assessed and compared the performance of (a total of) 27 
of the most widely used software languages. We used two 
different computer problem repositories: Computer 
Language Bench- mark Game (CLBG)3 and the Rosetta 
Code4 repositories [1–3]. Both repositories define a set of 
computer tasks and provide implementations in a large 
group of programming languages. While CLBG was 
tailored to analyze execution time performance of 
languages, Rosetta Code was defined with more program 
comprehension purposes. 



We compiled/executed such programs using the state-of-
the-art compilers, virtual machines, interpreters, and 
libraries for each language. Then, we monitored the 
execution time, peak and overall memory consumption, 
and CPU/- DRAM/GPU energy consumption. We produced 
a energy ranking of the 27 languages and we also analyzed 
those results according to the languages’ execution type 
(compiled, virtual machine and interpreted), and 
programming paradigm (imperative, functional, object 
oriented, scripting) used. For each of the execution types 
and programming paradigms, we compiled a software 
language ranking according to each objective individually 
considered (e.g., time or energy consumption). Our first 
experiments show expected results, like the C language 
being both the faster and greener language, however, it 
also show slower languages that are more energy efficient 
than others [2, 3].  

Greenness in Data 
Structures  
Programming language/paradigm, and its powerful 
compiler optimizations, is not the only aspect that 

influences the energy consumption of a software system. In 
fact, a program may also become more efficient by “just” 
optimizing its libraries [4,5]. Most languages offer powerful 
libraries to manipulate data structures. In GSL we studied 
the energy performance of two advanced data structures 
widely used in the Java and Haskell programming 
languages.  

In Java, we conducted a detailed study in terms of energy 
consumption of the Java Collections Framework (JCF) 
library 5. We considered the usual three different groups of 
data structures, namely Sets, Lists, and Maps, and for each 
of these groups, we studied the energy consumption of 
each of its different implementations and methods [4]. This 
JCF energy-awareness can not only be used to steer 
software developers in writing greener Java software, but 
also in optimizing legacy Java code. We have developed a 
Java data structure refactoring tool, named jStanley, which 
refactors Java source code when a greener collection is 
available [6]. We have also executed an initial evaluation 
with 7 publicly available Java projects where we were able 
to improve the energy consumption between 2% and 17%.  



In Haskell, we studied the energy consumption of Edison6, 
a fully mature and well documented library of purely 
functional data structures [7]. Edison provides different 
functional data structures for implementing three types of 
abstractions: Sequences (lists, queues and staks), 
Collections (sets and heaps) and Associative Collections 
(maps and finite relations). We analyzed 16 
implementations of such data structures while measuring 
detailed energy and time metrics [5]. We further 
investigated the energy consumption impact of using 
different compilation optimizations. We have concluded 
that energy consumption is directly proportional to 
execution time and that the energy consumption of DRAM 
representing be- tween 15 and 31% of the total energy 
consumption. Finally, we also concluded that optimizations 
can have both positive or negative impact on energy 
consumption.  

Greenness in Source 
Code  
Not only languages and data structure libraries do 
influence energy consumption, algorithms and 

programming practices also play a key role on the 
efficiency of programs. In GSL we have adapted well-know 
fault localization techniques to statically locate “energy 
leaks” (seen as energy inefficiency, thus, energy faults) in 
the source code of applications [8–11]. We defined SPELL - 
SPectrum-based Energy Leak Localization to determine red 
(energy inefficient) areas in software. A first experimental 
study shows that expert programmers, with access to the 
energy leaks detects by SPELL, were able to better 
optimize the energy consumption of the programs 
(between 15% and 74%), than experts with no information 
or the information provided by a standard programs 
(runtime) profiler. We have also studied the energy 
behaviour of C/C++ programs [12].  

The widespread use of non-wired devices and the advent 
of the internet-of- things, is changing the way software 
engineers develop their software. Software has to run on a 
variety of mobile devices and energy consumption is a 
main concern when developing software. Software Product 
Lines (SPL) have emerged as an important software 
engineering discipline allowing the development of soft- 
ware that shares a common set of features. In GSL we have 
defined static analysis techniques to reason about energy 
consumption in SPLs based on conditional compilation.



Such techniques allow software developers to identify 
(non) green products and/or features in a SPL [13].  

Android is a widely used ecosystem for non-wired devices, 
and software energy analysis and optimization is an active 
area of research. The GSL team has developed several 
techniques [14,15] and tools to analyze and optimize 
energy consumption in the source code of Android 
applications [16, 17].  

Nowadays, most of the data stored in our mobile devices 
(files, photos, videos) is also stored in the cloud provided 
by the ecosystem of the device’s operating system. Such 
cloud systems are data centers that daily run a large 
amount of data querying processes, monitored and 
controlled by highly sophisticated database management 
systems, which are responsible to establish efficient query 
processing plans to support them. Database systems 
usually rely on plans that optimize response time. We 
designed and developed an alternative method to define 
energy consumption plans for database queries [18, 19]. 
Our first experimental results show that the use of 
optimization heuristics allows for significant gains, both in 
terms of energy consumption and the time spent with the 
execution of queries.  

Conclusions  
This technical report described the research developed at 
the Green Software Laboratory, namely a green ranking of 
programming languages and data structures, techniques 
to detect energy inefficiency in a software system’s source 
code, and an energy-aware query execution plan for 
database systems.  

References  
[1] Couto, M., Pereira, R., Ribeiro, F., Rua, R., Saraiva, J.: 
Towards a green ranking for programming languages. In: 
Proceedings of the 21st Brazilian Symposium on 
Programming Languages. SBLP (2017) 7:1–7:8 (best paper 
award).  
[2] Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., 
Fernandes, J.P., Saraiva, J.: Energy efficiency across 
programming languages: How do energy, time, and 
memory relate? In: Proc. of the 10th ACM SIGPLAN Int. 
Conference on Software Language Engineering. SLE 2017, 
New York, NY, USA, ACM (2017) 256–267



[3] Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., 
Fernandes, J.P., Saraiva, J.: Ranking programming 
languages by energy efficiency. Science of Computer 
Programming (2018) Submitted.  
[4] Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, 
J.P.: The Influence of the Java Collection Framework on 
Overall Energy Consumption. In: 5th Int. Workshop on 
Green and Sustainable Software. GREENS ’16, ACM (2016) 
15–21  
[5] Melfe, G., Fonseca, A., Fernandes, J.P.: Helping 
developers write energy efficient haskell through a data-
structure evaluation. In: Proceedings of the 6th 
International Workshop on Green and Sustainable 
Software. GREENS ’18, New York, NY, USA, ACM (2018) 9–
15  
[6] Pereira, R., Sima ̃o, P., Cunha, J., Saraiva, J.: jStanley: 
Placing a Green Thumb on Java Collections. In: 33rd ACM/
IEEE International Conference on Automated Software 
Engineering. ASE 2018, New York, NY, USA, ACM (2018) 
856–859  
[7] Lima, L.G., Melfe, G., Soares-Neto, F., Lieuthier, P., 
Fernandes, J.P., Castor, F.: Haskell in Green Land: Analyzing 
the Energy Behavior of a Purely Functional Language. In: 
Proc. of the 23rd IEEE Int. Conf. on Software Analysis, 
Evolution, and Reengineering (SANER’2016), IEEE (2016) 

517–528  
[8] Pereira, R., Carcao, T., Couto, M., Cunha, J., Fernandes, 
J.P., Saraiva, J.: Helping programmers improve the energy 
efficiency of source code. In: Proc. of the 39th Int. Conf. on 
Soft. Eng. Companion, ACM (2017)  
[9] Pereira, R.: Locating energy hotspots in source code. In: 
Proceedings of the 39th International Conference on 
Software Engineering Companion. ICSE-C ’17, Piscataway, 
NJ, USA, IEEE Press (2017) 88–90 (ACM SRC silver award).  
[10] Pereira, R.: Energyware Engineering: Techniques and 
Tools for Green Software Development. PhD thesis, Depart. 
de Informatica, Universidade do Minho (2018)  
[11] Pereira, R., Carc a̧ ̃o, T., Couto, M., Cunha, J., 
Fernandes, J.P., Saraiva, J.: Spelling out energy leaks: 
Aiding developers locate energy inefficient code. (2018) 
(submitted).  
[12] Santos, M., Saraiva, J., Porkolab, Z., Krupp, D.: Energy 
consumption measurement of c/c++ programs using clang 
tooling. SQAMIA’17 - CEUR Workshop Proceedings 1938 
(2017)  
[13] Couto, M., Borba, P., Cunha, J., Fernandes, J.P., Pereira, 
R., Saraiva, J.: Products  go green: Worst-case energy 
consumption in software product lines. In: Proceedings of 
the 21st International Systems and Software Product Line 
Conference - Volume A. SPLC ’17, ACM (2017) 84–93 



[14] Couto, M., Carcao, T., Cunha, J., Fernandes, J.P., 
Saraiva, J.: Detecting anomalous energy consumption in 
android applications. In Quinta ̃o Pereira, F.M., ed.: 
Programming Languages: 18th Brazilian Symposium, SBLP 
2014, Maceio, Brazil, October 2-3, 2014. Proceedings. 
(2014) 77–91  
[15] Cruz, L., Abreu, R.: Performance-based guidelines for 
energy efficient mobile ap- plications. In: 4th International 
Conference on Mobile Software Engineering and Systems. 
MOBILESoft ’17, Piscataway, NJ, USA, IEEE Press (2017) 46–
57  
[16] Couto, M., Cunha, J., Fernandes, J.P., Pereira, R., 
Saraiva, J.: Greendroid: A tool for analysing power 
consumption in the android ecosystem. In: 2015 IEEE 13th 
International Scientific Conference on Informatics. (Nov 
2015) 73–78  
[17] Cruz, L., Abreu, R., Rouvignac, J.N.: Leafactor: 
Improving energy efficiency of android apps via automatic 
refactoring. In: IEEE/ACM International Conference on 
Mobile Software Engineering and Systems, MobileSoft 
2017. (2017)  
[18] Goncalves, R., Saraiva, J., Belo, O.: Defining energy 
consumption plans for data querying processes. In: 2014 
IEEE International Conference on Big Data and Cloud 
Computing (BdCloud)(BDCLOUD). Volume 00. (Dec. 2015) 

641–647  
[19] Belo, O., Goncalves, R., Saraiva, J.: Establishing energy 
consumption plans for green star-queries in data 
warehousing systems. In: 2015 IEEE International 
Conference on Data Science and Data Intensive Systems. 
(Dec 2015) 226–231  



Teaching Task 
Oriented 
Programming  
On the Composability, Comprehensibility, Correctness win- 
ter school there will be two tutorials about Task Oriented 
Programming and concrete systems based on this 
paradigm. The iTask system offers a web-based interface 
for humans to see their tasks and share their progress with 
these tasks. The mTask system applies the same concepts 
to specify the tasks executed by microprocessors. In this 
contribution, we justify the decisions made at the teacher 
training in Amsterdam about what and how these topics 
will be presented at the winter school. Due to the limited 
time and diverse background of the audience we will focus 
on the practical usage of the paradigm. There is barely 

time to address the challenges and beauty of the 
construction of these systems.  

Introduction  
Task Oriented Programming, TOP, is a style of 
programming centered around the concept of tasks as 
executed by humans and machines. These tasks are 
specified by ordinary functions in a functional 
programming language. In all our examples we will use 
Clean [6]. The semantics of the tasks is quite different from 
plain function evaluation. A task is evaluated over and over 
again until it produces a stable value, or its result is not 
needed anymore. Intermediate task results can be 
observed by other tasks. Tasks can be composed by task 
combinators.  

At the Composability, Comprehensibility, Correctness 
winter school in Kosice, there will be two sessions on TOP. 
These are entitled Why ”Task Oriented Programming” 
matters and Functional Programming of Devices. Both 
sessions will consist of a lecture and practical work of the 
attendees. In this paper, we motivate the decisions about 
content and organization of these sessions after the 
discussions at the teacher training. 



Audience  
The Composability, Comprehensibility, Correctness winter 
school is for BSc, MSc, PhD students as well as for teachers. 
Discussions at the teacher training revealed that the 
experience in functional programming is diverse, both in 
the amount of experience as language-wise. The 
languages used range from pure and lazy languages like 
Haskell and Clean to Erlang, Scheme and Scala.  

This implies that we cannot assume a solid common 
functional programming experience. Only a part of the 
audience will be familiar with concepts like strong typing, 
higher order functions, type constructor classes, Monads 
and generics. Although these topics are the building 
blocks of TOP, we cannot assume that they are known by all 
participants.  

Task Oriented 
Programming  
Task Oriented Programming is based on a small number of 
domain specific prim- itive tasks. These primitive tasks 

typically interact with the environment, e.g., humans 
executing part of the tasks, or hardware interacting with the 
physical world. Task combinators are used to compose task 
from smaller tasks.  

Tasks can communicate via their results as well as via 
Shared Data Sources, SDSs. Such an SDS contains typed 
data that can be accessed via primitives like get and set. 
These primitives act on the task state to ensure referential 
transparency.  

In order to reuse datatypes and computations of an 
existing language, a TOP system is often constructed as a 
Domain Specific Language, DSL, embedded in an existing 
(functional) programming language.  

The iTask System  

The iTask system was the first implementation of TOP [5]. It 
is a DSL embedded in the functional programming 
language Clean. The iTask system facilitates in- teraction 
with human worker by the type driven generation of web-
pages. These pages are displayed in one of the existing 
browsers. The page provides informa- tion of the current 
tasks for a user. The user can interact with the iTask system 
by filling out forms and pushing buttons. 



Used Techniques  
The iTask system passes a state around very similar to a 
state monad. The operators to return, bind (>>=), and 
sequence (>>|) are very similar to the well known monadic 
versions [4,7]. This requires higher-order functions and 
user- defined infix operators. To reuse the operator symbol 
for different Monads they are defined as type constructor 
classes.  

The task combinators are all higher order functions, 
typically user-defined infix operators, manipulating task 
results and the global task state. Specific for TOP is that the 
tasks produce intermediate results that can be observed 
while the tasks are repeated over and over again until they 
produce a stable result or their result is no longer used. 
This requires higher order functions, laziness and 
automatic garbage collection.  

The iTask system generates a web-server that is used by 
the human workers to find their task. Like all web-servers, 
this requires serialization and deserialization of the state to 
store and retrieve the current state. By filling out web-forms 
for arbitrary algebraic data types users indicate their 

progress with the tasks. All of these features are 
implemented using generic programming.  

To implement the tasks monitoring the value of an SDS 
efficiently there is a hidden publish-subscribe system for 
each SDS that activates tasks using this SDS when its value 
is updated.  

Apart from these properties, the iTask system uses many 
additional techniques. For instance the execution of task 
parts in an interpreter running in the browser to ensure a 
fast response of the system for highly interactive tasks like 
a drawing.  

Teaching at the 
Winter School  
Any teaching of programming requires practical 
programming experience using the educated techniques 
to master them. This holds also for TOP. As a consequence, 
we divide the four hours available for Why ”Task Oriented 
Programming” matters into two parts of nearly identical 
size. 



In the first part, we will outline the concept of TOP using 
the iTask system. Given the background of the majority of 
the students, we have to skip nearly all details about the 
implementation of the system and we have to focus on the 
use of the library. This library is actually a shallow 
embedded DSL for TOP. In the lecture, we use this a set of 
primitives without spending much time to explain its 
architecture and implementation.  

For the practical work, we will split the existing basic 
example project into a set of small independent TOP 
projects. The assignments will consist of small variations of 
these projects to experience the flavor of task oriented 
programming.  

The more experienced functional programmers can skip 
most of the basic exercises and jump directly to more 
advanced assignment. This way, we will be able to adapt to 
the individual skills of each participant.  

The mTask System  
Microprocessors are computer systems with very limited 
computing capabilities. They have typically a rather low 
clock rate and severe memory restrictions, like a few KB of 

memory to store the data of a running program. These 
cheap processors are the driving force of many elements in 
the Internet of Things, IoT. In such microprocessor systems 
one typically has to monitor several input ports as well as 
to control some outputs based on these observations. Due 
to the hardware restrictions, there is typically no operating 
system offering support.  

The TOP paradigm provides lightweight threads that are 
very well suited to monitor and coordinate the progress of 
such well defined simple tasks. These tasks can run at their 
own speed while combinators and shared data sources are 
used to coordinate them. Running the iTask system on the 
IoT devices would enable us to construct programs that are 
partially executed on a web-server as well as on the IoT 
devices. The limitations of microprocessors make it 
impossible to run a full-fledged iTask program on IoT 
devices.  

To approximate the ideal solution we have developed the 
mTask system [3, 2]. This is a multiview shallowly 
embedded DSL that can be used as part of the iTask 
system. It supports the TOP paradigm including the same 
task results as the iTask system, task combinators and 
shared data sources. 



By construction this DSL has no higher order functions and 
no recursive datatypes. Due to the restrictions imposed in 
this DSL, mTask programs can be compiled to code that 
executes on microprocessors. Despite these restrictions, 
the DSL is very suitable to specify the tasks to be executed 
on IoT devices easily and very concisely.  

Used Techniques  
The mTask system is a multiview shallowly embedded DSL 
based on type con- structor classes [1]. Each instance of 
these classes defines an interpretation, called a view, of a 
program constructed from these primitives. Typical views 
implement pretty printing, code generation for 
microprocessors, and simulation of the mTask programs as 
an iTask program.  

The DSL is extendable by construction in order to reuse 
existing libraries for peripherals like temperature sensors, 
displays and servo motors. It is simple to add such a library 
as a language primitive to the mTask system by introducing 
a new type constructor class and the required instances.  

To make the mTask implementation portable to many 
different microproces- sors and to make the reuse of 

existing C++ libraries easily, the code generation view 
produces C++ code for the Arduino platform instead of 
native machine code for some specific processor. The avr-
gcc compiler inside the Arduino plat- form can translate 
the generated C++ code and the libraries used to native 
code for many different microprocessors.  

Teaching at the 
Winter School  
Being able to execute high-level TOP programs on a tiny 
microprocessor inter- acting with peripherals is appealing 
for a tutorial in the winter school. However, executing a 
mTask program on an actual microprocessor requires 
much of the students; they must compose an mTask 
program inside the iTask system, execute the iTask 
program to obtain C++ code, feed this C++ code to the 
Arduino IDE, connect the Arduino IDE to the 
microprocessor and select the right options, up- load the 
compiled program to the microprocessor, and finally run it. 
All of these steps are quite easy, but the entire process 
produces only a result when every step is done correctly. 



Since the generated program will run on a microprocessor 
without operating system and very limited input/output 
peripherals debugging such a program is challenging. 
After ample discussion, this sequence of steps was 
deemed to be too ambitious for the given time and 
audience.  

Fortunately, the simulator view of the mTask system offers 
an alternative that is much easier to use. This view 
transforms the mTask program to an ordinary iTask 
program. The simulator offers a step-by-step execution of 
the mTask pro- gram. It displays a trace of the last step of 
the last executed task and the state of all peripherals and 
shared data sources. The clock, the value of the SDSs, as 
well as the state of the peripherals can be changed 
interactively to control the execution and investigate 
various scenarios. This makes the practical work of this 
tutorial a direct successor of the practical work of the 
previous iTask tutorial.  

It was decided to schedule these tutorials on one day with 
the iTask lecture and associated practical work in the 
morning and the mTask tutorial in the afternoon. This way, 
the mTask session can directly build on the knowledge and 
skills gained in the iTask session. The understanding of 

TOP that stated in the morning will be deepened in the 
afternoon.  

Conclusion  
For both tutorials on TOP there are many more interesting 
topics than can be covered in the given time for the 
audience of the winter school. In the sessions, we will focus 
on understanding and using the TOP paradigm by relative 
simple examples. Slightly advanced examples will be used 
to illustrate the capabilities of this approach. In the 
practical work, we will focus on illustrative exercises that 
are mostly variants of examples used in the tutorial. For the 
advanced participants there will be some challenging 
assignments as well as the opportunity to discuss aspects 
of the systems in depth.  

References  
[1] Carette, J., Kiselyov, O., Shan, C.c.: Finally tagless, 
partially evaluated: Tagless staged interpreters for simpler 
typed languages. J. Funct. Program. 19(5), 509–543 (Sep 
2009). https://doi.org/10.1017/S0956796809007205, 
http://dx.doi.org/10. 1017/S0956796809007205 



[2] Koopman, P., Lubbers, M., Plasmeijer, R.: A task-based 
dsl for micro- computers. In: Proceedings of the Real World 
Domain Specific Languages Workshop 2018. pp. 4:1–4:11. 
RWDSL2018, ACM, New York, NY, USA (2018). https://
doi.org/10.1145/3183895.3183902, http://doi.acm.org/
10.1145/ 3183895.3183902  
[3] Koopman, P., Plasmeijer, R.: A shallow embedded type 
safe extendable DSL for the Arduino. In: Revised Selected 
Papers of the 16th Interna- tional Symposium on Trends in 
Functional Programming - Volume 9547. pp. 104–123. TFP 
2015, Springer-Verlag New York, Inc., New York, NY, USA 
(2016). https://doi.org/10.1007/978-3-319-39110-6_6, 
http://dx.doi.org/ 10.1007/978- 3- 319- 39110- 6\_6  
[4] Peyton Jones, S.L., Wadler, P.: Imperative functional 
programming. In: Pro- ceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming 
Languages. pp. 71–84. POPL ’93, ACM, New York, NY, USA 
(1993). https://doi.org/10.1145/158511.158524, http://
doi.acm.org/10. 1145/158511.158524  
[5] Plasmeijer, R., Achten, P., Koopman, P.: iTasks: 
executable specifications of inter- active work flow systems 
for the web. In: Hinze, R., Ramsey, N. (eds.) Proceedings of 
the ICFP’07. pp. 141–152. ACM, Freiburg, Germany (2007) 

[6] Plasmeijer, R., van Eekelen, M., van Groningen, J.: Clean 
language report (version 2.2) (2011), http://clean.cs.ru.nl/
Documentation  
[7] Wadler, P.: Comprehending monads. In: Proceedings of 
the 1990 ACM Conference on LISP and Functional 
Programming. pp. 61–78. LFP ’90, ACM, New York, NY, USA 
(1990). https://doi.org/10.1145/91556.91592, http://
doi.acm.org/10.1145/ 91556.91592  



An Interactive 
Approach to 
Coloured Petri 
Nets Teaching  
Formal methods belong to the techniques that, when used 
appropriately, can significantly contribute to the 
correctness of a software or hardware system under 
development. One of the suitable methods for systems 
with concurrent or non-deterministic behaviour is the 
Coloured Petri Nets modelling language. In this paper a 
teaching activity aimed at an explanation of the basic 
principles of the language and some of its functional 
programming-related features is described. The activity 
duration has been two and half hours and it involved an 

interactive model building with active audience 
participation.  

Introduction  
Considering the increasing dependency of the 
contemporary human society on computer systems, their 
correctness should be of utmost importance. And one of 
the approaches that can significantly contribute to the 
correctness is a uti- lization of formal methods during the 
software and hardware development. A formal method is a 
mathematically-based technique, which provides a formal 
language with unambiguously defined syntax and 
semantics and an apparatus, which allows performing 
verification, development and simulation tasks with sys- 
tem specifications, written in the language. One of the 
significant members of the formal methods family is the 
Coloured Petri Nets (CPN) modelling language. CPN [4, 3] 
combine the Petri nets formalism [1] with a functional 
language to handle data manipulation and decision 
procedures. The functional language is called CPN ML and 
it is a slightly modified version of Standard ML [2, 5]. The 
CPN language and corresponding specification, 
verification and simulation tasks are supported by the CPN 
Tools [6] software. 



For more than a decade, CPN are a part of undergraduate 
courses related to formal methods, modeling and 
simulation at the home institution of the author. One of the 
methods, applied by the author when explaining CPN 
concepts is an interactive approach with an active 
audience participation. Here, the audience picks out the 
domain and process for which a CPN model will be 
designed and helps to create its selected parts. The 
experience from a particular implementation of this 
approach in a training activity for university teachers is 
described in the rest of this paper.  

Training Activity 
with Interactive CPN 
Model Creation  
The training activity was organized for about 10 
participants, who were university teachers with certain 
functional languages background. The participants had 
limited to no previous knowledge of CPN. The total 
duration of the activity was about 2.5 hours, excluding 
breaks, and it was split into three phases.  

The first phase took about 30 minutes and explained the 
basic principles of CPN. Namely, that CPN have a graphical 
form, a bipartite graph with two types of vertices: places, 
drawn as ellipses and transitions, drawn as rectangles. The 
places hold tokens, which represent a state of the net and 
the transitions can be understood as events, which change 
the state by consuming existing tokens and creating new 
ones.  

The second and third phase were devoted to a creation of 
a CPN model. As one of the goals of the activity was to 
show how some more advanced Stan- dard ML concepts, 
namely structures and functors, can be used in CPN 
models, the participants had been given a starter CPN 
model, which already used the concepts, before the 
second phase begun. The starter model is shown in Fig. 1. 
The part consisting of the nodes nextId, arrival and 
customer represents an arrival of customers, which arrive 
one by one to be served. The serving itself is not presented 
in the starter model. Instead, there is the transition toList, 
which takes a token from customer and adds its value to a 
list, held in the place customerList. The transition 
takeAndSortList is fired at regular inter- vals, defined by the 
value prPeriod.  



Each firing of takeAndSortList empties the list in 
customerList, sorts its content and stores the ordered 
version in customerListOrdered. The place nextProcessing 
is auxiliary and ensures that takeAndSortList is fired only at 
the regular intervals. The sorting is provided by a function 
called descending, which implements the Quicksort 

algorithm. The function utilizes Standard ML structures and 
functors.  

For the serving part, the activity participants decided to 
model a coffee vend- ing machine. During the second 
phase they participated on a creation of a CPN model



firing of takeCoffee, the customer takes the prepared 
coffee and the machine returns to the “ready” state.  

After the second phase there was about 70 minutes long 
break. During the break the lecturer connected the model 
from the phase 2 to the parts of the starter model and 
added vertices and arcs describing the customer 
behaviour. He also corrected some inconsistencies in the 
model, pointed out by one of the participants. The 
resulting, final, CPN model can be seen in Fig. 3. The 
vertices taken from the starter model (Fig. 1) without any 
change are rendered in grey.  

The place customer is replaced by customerQueue, which 
holds a token with a list of values, representing a queue of 
customers waiting for the machine. Instead of the 
transition toList there is a serving part, created from the 
result of the second phase (Fig. 2). The serving part of the 
final model differs from Fig. 2 in three key aspects:  

– The tokens carry information about the customer being 
served and arc expressions define durations of 
corresponding actions.  

that captures the basic operation of the machine. The model 
is shown in Fig. 2. In its initial state the machine is ready to 
serve a customer (one token in the place ready) and is filled 
with 100 coffee doses (100 tokens in coffeeStack). The serving 
starts with a customer ordering a coffee by a firing of the 
transi- tion order. Then the machine waits for the customer’s 
next step (a token in waitingForMoney). The customer can 
insert money (by firing insertMoney) or cancel the order (by 
firing cancelOrder). The cancellation returns the machine to 
the “ready” state. If the money is inserted, the machine 
prepares the coffee (by firing makeCoffee). Finally, by a



–  Inconsistencies regarding the role of places and 
transitions are corrected. Now, all the transitions represent 
instantaneous events. For example, the transition 
makeCoffee from Fig. 2 is replaced by the place 
makingCoffee and the transition takeCoffee is replaced by 
the vertices startTakingCoffee, takingCoffee and 
finishTakingCoffee.  

 
–  Actions and states of the customers and the machine are 
modelled separately. The vertices customerQueue, 
insertingDecidingEtc, waitingForCoffee, coffeeReady, 
startTakingCoffee, takingCoffee and finishTakingCoffee 
belong to the customers while the rest of the serving part 
represents the machine or both parties.  
The third phase of the training activity has been devoted 
to the explanation of the final model and a discussion 
about the place of such models in the development of 
correct computer systems. It took about 30 minutes.  



Conclusion  
 
The interactive training activity, presented here, is suitable 
for short, intensive courses, which often take place during 
summer schools or other similar teaching events. The 
described test run of the activity revealed that the original 
time donation, which was 2 hours, was not sufficient. 
Therefore the third phase has been needed, where the 
lecturer presented the final model. Considering the time 
needed to construct the final model by the lecturer, it will 
require another at least two hours to perform the whole 
model creation process interactively with the auditory. All 
the CPN models presented or mentioned here can be 
obtained by request from the author.  

References  
[1] Desel,J.,Reisig,W.:Place/transitionpetrinets. 
In:Reisig,W.,Rozenberg,G.(eds.) Lectures on Petri Nets I: 
Basic Models, Lecture Notes in Computer Science, vol. 
1491, pp. 122–173. Springer Berlin Heidelberg. DOI: 
10.1007/3-540-65306-6 (1998)  

[2] Harper, R.: Programming in Standard ML. Carnegie 
Mellon University (2011),  
   http://www.cs.cmu.edu/~rwh/smlbook/book.pdf 

[3] Jensen, K.: An introduction to the theoretical aspects of 
coloured petri nets. In: A Decade of Concurrency, 
Reflections and Perspectives, REX School/Symposium. pp. 
230–272. Springer-Verlag, London, UK. DOI: https://
doi.org/10.1007/3-540-58043- 3_21 (1994)  
[4] Jensen, K., Kristensen, L.M.: Coloured Petri Nets: 
Modelling and Validation of Concurrent Systems. Springer. 
DOI: 10.1007/b95112 (2009)  
[5] Milner, R., Tofte, M., Macqueen, D.: The Definition of 
Standard ML. MIT Press, Cambridge, MA, USA (1997), 
http://sml-family.org/sml97-defn.pdf  
[6] CPN tools homepage (2018), http://cpntools.org/  



CodeCompass: 
an Extensible 
Code 
Comprehension 
Framework  
CodeCompass is an open source tool to help 
understanding large legacy software systems. Based on the 
LLVM/Clang compiler infrastructure, CodeCompass gives 
exact information on complex C/C++ language elements. 
The wide range of interactive visualizations includes class 
and function call diagrams; architectural, component and 

interface diagrams and “points to” diagrams and many 
others. CodeCompass also utilizes build information to 
explore the system architecture as well as version control 
information when available. Clang based static analysis 
results are also integrated. Although the tool focuses 
mainly on C and C++, it also supports Java and Python 
languages. Having a web-based, pluginable, extensible 
architecture, the CodeCompass framework can be an open 
platform to further code comprehension, static analysis 
and software metrics efforts.  

Introduction  
Bug fixing or new feature development requires a 
confident understanding of all details and consequences 
of the planned changes. Code comprehension tools can 
help to reveal the original intentions and implementation 
details by building a model from the source code and 
other available information. Although a number of such 
tools are available either as proprietary or free software, 
their feature set is limited.  

CodeCompass was developed to eliminate these 
restrictions. 



The CodeCom- pass project is a joint open source effort of 
Ericsson Ltd. and the Eötvös Loránd University, Budapest to 
help understanding large software systems. To provide 
exact information on complex C/C++ language elements 
like overloading, inheritance, the usage of variables and 
types, possible uses of function pointers and the virtual 
functions – features that various existing tools support only 
partially – CodeCompass is based on a real compiler, the 
LLVM/Clang infrastructure. Thus, it eliminates the 
weaknesses of the usual “light-weight” comprehension 
tools, like OpenGrok.  

CodeCompass, however, is not restricted to the source 
code. It uses the build information of the system to reveal 
architectural connections. It also employs the version 
control information if available, so one can identify 
connections be- tween different source files “accidentally” 
modified in the same commit. To help fast and precise 
perception CodeCompass uses both textual and graphical 
representation of the software system to comprehend. A 
number of (interactive) diagrams are accessible from the 
usual function call graphs to the unique architectural 
diagrams. To provide easy access for the users, 
CodeCompass has a web-based architecture. The client 
can be a standard web browser, an editor plug-in or any 

3rd party application. The communication is based on a 
REST API and scales well for parallel client requests.  

In this paper we will compare CodeCompass to existing 
comprehension tools and describe its feature set. In 
Section 2 we overview the main archetypes of existing 
tools for code comprehension. We introduce the 
extendible architecture of CodeCompass in 3. The main 
features of the tool are discussed in Section 4. We 
summarize the paper in Section 5.  

Related work  
On the software market there are several tools which aim 
some kind of source code comprehension. Some of them 
uses static analysis, others examine also the dynamic 
behavior of the parsed program. These tools can be 
divided into dif- ferent archetypes based on their 
architectures and their main principles. On the one hand 
tools are having server-client architecture. Generally these 
tools parse the project and store all necessary information 
in a database. The (usually web- based) clients are served 
from the database. These tools can be integrated into the 
workflow as nightly CI runs. 



This way the developers can always browse and analyze 
the whole, large, legacy codebase. Also there are client-
heavy applications where smaller part of the code base is 
parsed. This is the use case for IDE editors where the 
frequent modification of the source requires quick update 
of the database about analyzed results. In this section we 
present some tools used in industrial environment from 
each categories.  

Woboq [3] is a web-based code browser for C and C++. 
This tool has extensive features which aim for fast browsing 
of a software project. The user can quickly find the files and 
named entities by a search field which provides code 
completion for easy usability. The navigation in the code 
base is enabled through a web page consisting of static 
HTML files. These files are generated during a parsing 
process. The advantage of this approach is that the web 
client will be fast since no on-the-fly computation is 
needed on the server side while browsing.  

Hovering the mouse on a specific function, class, variable, 
macro, etc. can show the properties of that element. For 
example, in case of functions one can see its signature, 
place of its definition and place of usages. For classes one 
can check the size of its objects, the class layout and offset 
of its members and the inheritance diagram. For variables 

one can inspect their type and locations where they are 
written or read.  

In C and C++ macros form a sublanguage which is 
evaluated in a precompilation step. This evaluation is a 
textual substitution of macro tokens which means that the 
compilation phase works with another code than the 
original one. In Woboq, the final value of macro expansions 
can also be inspected.  

A very handy feature of the tool is the semantic 
highlighting. By this feature the different language 
elements can easily be distinguished: the formatting of 
local, global or member variables, virtual functions, types, 
typedefs, classes, macros, etc. are all different.  

Woboq can provide the aforementioned features because 
the information needed is collected in a real compilation 
phase. The examined project first has to be compiled and 
parsed by Woboq. The parsing is done by LLVM/Clang 
infrastructure which makes the whole abstract syntax tree 
available. This way all pieces of semantic information can 
be extracted with the same semantics the final program is 
to have. This also gives a disadvantage of the tool, namely 
Woboq can only be used for browsing C and C++ projects.



OpenGrok [4] is a fast source code search and cross 
reference engine. Op- posed to Woboq, this tool doesn’t 
perform deep language analysis, therefore it is not able to 
provide semantic information about the particular entities. 
Instead, it uses Ctags [5] for parsing the source code only 
textually, and to determine the type of the specific 
elements. Simple syntactic analysis enables the 
distinguishing of function, variable or class names, etc. The 
search among these is highly optimized, and therefore very 
fast even on large code bases. The search can be 
accomplished via compound expressions (e.g. defs:target), 
containing even wild cards, furthermore, results can be 
restricted to subdirectories. In addition to text search there 
is opportunity to find symbols or definitions separately. The 
lack of semantic analysis allows Ctags to support several 
(41) programming languages. Also an advantage of this 
approach is that it is possible to incrementally update the 
index database. OpenGrok also gives opportunity to 
gather information from version control systems like 
Mercurial, SVN, CSV, etc.  

Understand [6] is not only a code browsing tool, but a a 
complete IDE. Its great advantage is that the source code 
can be edited and the changes of the analysis can be seen 
immediately.  

Besides code browsing functions already mentioned for 
previous tools, Understand provides a lot of metrics and 
reports. Some of these are the lines of code (total/average/
maximum globally or per class), number of coupled/base/
derived classes, lack of cohesion [2], McCabe complexity 
[1] and many others. Treemap is a common representation 
method for all metrics. It is a nested rectangular view 
where nesting represents the hierarchy of elements, and 
the color and size dimensions represent the metric chosen 
by the user.  

For large code bases, the inspection of the architecture is 
necessary. Under- stand can show dependency diagrams 
based on various relations such as function call hierarchy, 
class inheritance, file dependency, file inclusion/import. 
The users can also create their custom diagram type via the 
API provided by the tool.  

In programming, the core concepts are common across 
languages, but there are some concepts which are 
interpreted differently in a particular language. Understand 
can handle ∼ 15 languages and can provide language 
specific information about the code e.g. function pointer 
analysis in C/C++ or package hierarchy diagrams in Ada. 



Understand builds a database from the code base. All 
information can be gathered via a programmable API. This 
way the user can query all the necessary information which 
are not included in the user interface.  

CodeSurfer [7] is similar to Understand in the sense that it 
is also a thick client, static analysis application. Its target is 
understanding C/C++ or x86 machine code projects. 
CodeSurfer accomplishes deep language analysis which 
provides detailed information about the software behavior. 
For example, it im- plements pointer analysis to check 
which pointers may point to a given variable, lists the 
statements which depend on a selected statement by 
impact analysis, and uses data flow analysis to pinpoint 
where a variable was assigned its value, etc.  

The CodeCompass 
Architecture  
In the previous section we have listed some aspects 
concerning the goals and architectures of code 
comprehension tools. Now we present where 
CodeCompass stands among these tools.  

CodeCompass has a client-server architecture in which it 
presents the information gathered in a preceding parsing 
phase. The reason why this architecture was chosen comes 
from the goal of the tool. As opposed to code editors, 
Code- Compass has been planned to be a code 
comprehension tool. There are fundamental differences 
between these two use-cases. During code writing, 
programmers are manipulating only a few files at the same 
time. In code comprehension, however, it is needed to 
consider the sources of multiple modules through the 
code base. In editors code completion is one of the most 
useful features: the programmer doesn’t want to 
remember all methods and fields of a class, but requires 
the editor to list these. In code comprehension the wide 
range of visualizations is needed in order to overview the 
relations of code parts. While editing the source, the 
programmer focuses only to a relatively small fragment of 
the code, like a function or a class. In code comprehension 
it is not only the low-level behavior of the functions, but 
their dependencies and effects are considered in the 
context of high-level module system.  



The main user interface of CodeCompass is web-based. All 
the aforementioned visualizations and functionalities can 
be queried via a public API which is assigned to a server 
application. The web interface handles the use-cases that 
aim fast and handy browsing, inspection and 
comprehension tasks. However, CodeCompass is more 
than just a code browsing tool. It is also a framework, i.e. an 
extensible collector and presenter of static analysis 
processes. That is why the intention was not to create a 
client-heavy application which stores the analysis results on 
the client side, but being able to serve the various needs of 
users. This way it is possible to implement a script for 
example which collects the set of functions that form a 
closure by function call relation, thus specifying a coherent 
slice of the software.  

Another design requirement of CodeCompass was to 
handle large-scale code bases and still answering user 
requests very fast, i.e. in terms of seconds at most. This is 
accomplished by storing all the least amount of 
information in a database which are sufficient to answer the 
requests. Since we intended to give precise results for the 
queries, a preceding parsing process is required. In the 
first we stored the whole abstract syntax tree of the source, 
but this resulted a 1:1000 ratio between the source code 

and the database size. However, it turned out that most 
cases the users are interested in named entities only 
(function, variables, classes, macros, etc.), so it was 
unnecessary to store anything else, such as control 
structures or other statements. Nonetheless, there are 
some tasks which require more than the stored 
information, like a slicing algorithm. If the user wants to see 
the effects of changing the value of a variable when state 
modifying statements have to be taken into account too. 
This requires the reparsing of the code on the fly.  

CodeCompass 
features  
In this section we will give an overview about the features 
available through the standard GUI. When describing 
language specific features, such as listing callers of a 
method, we will always assume the project’s language to 
be C++ as that has the most advanced support in 
CodeCompass, but similar features are available for Java 
and Python. 



Search  
Probably the most fundamental use-case of a code 
comprehension tool is search- ing. One may search either 
for a file or source code. For finding source code elements 
the tool provides 3 different search possibilities:  

In full text search mode the search phrase is a group of 
words such as “returns an astnode*”. A query phrase 
matches a text block, if the searched words are next to 
each other in the source code in that particular order. 
Wildcards, such as *, or ? can be used, matching any 
multiple or single character. Logical operators such as 
AND, OR, NOT can be used to join multiple query phrases 
at the same time.  

On a higher level it is possible to find symbols in source 
codes by definition search. Here we are using CTags for 
indexing the code base thus being able to find variables, 
functions, classes, macros, etc. It is important to know that 
this language entity search has nothing to do with deep 
language parsing.  

While debugging a program, sometimes the only 
information to start with is an output message in the 
console log emitted by our software. This is the only trace 

where one may start, e.g. "DEBUG INFO: TSTHan: 
sys_offset=-0.019821, drift_comp=-90.4996, sys_poll=5". 
Note that such a message can contains timestamps or 
other dynamically generated fragments, so it is impossible 
to find this message as a direct string. However, in 
CodeCompass a fuzzy search can be done by log search.  

Information about language 
symbols  
When the element has been found, the next step is 
gathering information about it. The user can choose “Info 
tree” from the pop-up menu after selecting a named entity. 
This tree contains all information that is provided by a 
language parser. In case of C/C++ we are using the LLVM/
Clang compiler in order to fetch information about the 
symbols.  

For functions we can check their parameters, local 
variables, callers and callees. An interesting feature of the 
tree is that the callers are presented re- cursively i.e. the 
children of a node are the callers of a function. Their 
children nodes are the callers of these functions, and this 
goes on recursively, theoretically back to the main function. 



However, function calls are not always direct, but can 
happen via function pointers. Even though this is a 
dynamic behavior, CodeCompass summons all the 
occurrences where a function was assigned to a function 
pointer and the invocation happens through this pointer.  

In case of classes the collected information are the aliases 
(by typedef the class can have a synonym), inheritance 
relations (grouped by visibility), friends, methods/fields 
(direct or inherited) and usages (as local/global variable, 
function parameter/return type or field of another class).  

For variables it is useful to know the places in the code 
where it was written and read. For enumeration types the 
enumeration constants are listed with their integer values.  

Diagrams  
Visualizations are one of the most helpful representations 
for humans to overview a system. CodeCompass presents 
several symbol and file based diagrams. These diagrams 
are graph-based, i.e. they represent entities and their 
connections. These are also interactive diagrams: 
hovering the mouse over the nodes the represented entity 
is displayed in the text view.



An interface diagram called for a C/C++ source file shows 
which headers are “used only” or “implemented” by the 
given file. Usage means that a source file uses another file 
if there is a symbol usage in it which is declared in the 
other file. Implementation relationship means that a 
symbol is declared in a file (thus forming an interface) and 
defined in an other. These relations are also applicable for 
directories considering the contained files. In case of a 
compiled language there are also the output files like 
objects and executables. Based on linkage information we 
can present which sources make a binary file up.  

CodeBites provides a different visualization of the 
inspected source code. In this view the nodes of the graph 
are the definitions of specific named symbols, like classes, 
functions, etc. The idea is that a programmer would like to 
discover this entity by understanding its behavior but 
without loosing the focus. So the parts of the code text in a 
node are clickable which triggers the addition of the 
selected element’s definition.  

By clicking them the selected entity becomes the center 
node showing its relations according to the diagram type.  

Function call diagram shows all callers and callees of a 
function in a graph. UML class inheritance diagram shows 
the full inheritance chain up until the root base class and 
recursively for all derived classes. We have also 
implemented a pointer analysis diagram which shows the 
allocated objects and the pointers which possibly point to 
them. Of course this is a dynamic information which can only 
partly be collected in a static analysis. 



Version control visualizations  
Visualization of version control information is an important 
aid to understand software evolution. Git blame view 
shows line-by-line the changes (commits) to a given file. 
Changes that happened recently are colored lighter green, 
while older changes are darker red. This view is excellent to 
review why certain lines were added to a source file. 
CodeCompass can also show Git commits in a filterable list 
ordered by the time of commit. This search facility can be 
used to list changes made by a person or to filter commits 
by relevant words in the commit message.  

Metrics  
CodeCompass can show the McCabe Cyclomatic 
Complexity [1], the lines of code and the number of bugs 
found by Clang Static Analyzer metrics for individual files 
and summarized over directory hierarchies. These metrics 
can be visualized on a tree map, where directories are 
indicated by boxes. The box size and its color shade is 
proportional to the chosen metric.  

Browsing history  

De Alwis and Murphy studied why programmers 
experience disorientation when using the Eclipse Java 
integrated development environment (IDE) [8]. They use 
visual momentum [9] technique to identify three factors 
that may lead to disorientation: i) the absence of 
connecting navigation context during program 
exploration, ii) thrashing between displays to view 
necessary pieces of code, and iii) the pursuit of sometimes 
unrelated subtasks. The first factor means that the 
programmer, during investigating a problem visits several 
files as follows a call chain, or explores usage of a variable. 
At the end of a long exploration session, it is hard to 
remember why the investigation ended up in a specific file. 
The second reason for disorientation is the frequent 
change of different views in Eclipse. The third contributor 
to the problem is that a developer, when solving a program 
change task, evaluates several hypotheses, which are all 
individual comprehension subtasks. Programmers tend to 
suspend a subtask (before finishing it) and switch to 
another. For example, the programmer investigates how a 
return value of a function is used, but then changes to a 
subtask understanding the implementation of the function 
itself. It was observed that, for a developer, it is hard to 
remind themselves about a suspended subtask [10]. 



CodeCompass implements a browsing history view which 
records (in a tree form) the path of navigation in the source 
code. A new subtask is represented by a new branch of the 
tree, while the nodes are navigation jumps in the code 
labeled by the connecting context (such as “jump to the 
definition of init”). So problem i) and ii) is addressed, by the 
labeled nodes in the browsing history, while problem iii) is 
handled by the branches assigned to subtasks.  

CodeChecker - C/C++ Bug 
Reporting  
Clang Static Analyzer implements an advanced symbolic 
execution engine to report programming faults. 
CodeCompass can visualize the bugs identified the Clang 
Static Analyzer and Clang Tidy by connecting it to a 
CodeChecker server [11]. CodeCompass shows the bug 
position, and the symbolic execution path that lead to a 
fault.  

Namespace and type 
catalog  

CodeCompass processes Doxygen documentation and 
stores them for the function, type, variable definitions. It 
also provides a type catalog view that lists types declared 
in the workspace organized by a hierarchical tree view of 
namespaces.  

Summary  
We presented CodeCompass, a static analysis tool for 
comprehension of large- scale software. It was designed to 
avoid the various shortages of the existing comprehension 
tools which are either lightweight, easy to use but without 
the deep knowledge of a real compiler; or heavyweight, 
non-scalable installed on the client machine. Having a web-
based, pluginable, extensible architecture, the framework 
can be an open platform to further code comprehension, 
static analysis and software metrics efforts. Initial user 
feedback and usage statistics suggests that the tool is 
useful for developers in comprehension activities and it is 
used besides traditional IDEs and other cross-reference 
tools.  



References  
[1] Thomas J. McCabe, A Complexity Measure, IEEE 
Transactions on Software Engineering: 308–320, December 
1976  
[2] Henderson-Sellers, Object-Oriented Metrics: Measures 
of Complexity Prentice-Hall, 1996, Upper Saddle River, NJ, 
ISBN-13: 978-0132398725  
[3] Woboq, https://woboq.com/codebrowser.html, 18. 03. 
2018  
[4] OpenGrok, https://opengrok.github.io/OpenGrok, 18. 
03. 2018  
[5] CTAGS, http://ctags.sourceforge.net, 18. 03. 2018  
[6] Understand, https://scitools.com, 18. 03. 2018  
[7] CodeSurfer, https://www.grammatech.com/products/
codesurfer, 18. 03. 2018  
[8] B. De Alwis and G.C. Murphy, Using Visual Momentum 
to Explain Disorientation in the Eclipse IDE, Proc. IEEE 
Symp. Visual Languages and Human Centric Computing, 
pp. 51-54, 2006.  
[9] D. D. Woods., Visual momentum, A concept to improve 
the cognitive coupling of person and computer. Int. J. Man-
Mach. St., 21:229–244, 1984.  

[10] D. Herrmann, B. Brubaker, C. Yoder, V. Sheets, and A. 
Tio. Devices that remind, In F. T. Durso et al., editors, 
Handbook of Applied Cognition, pages 377–407. Wiley, 
1999.  

[11] Daniel Krupp, Gyorgy Orban, Gabor Horvath and 
Bence Babati, Industrial Experiences with the Clang Static 
Analysis Toolset, EuroLLVM 2015 Confernece, April 2015  

[12] E. Baniassad and G. Murphy, “Conceptual Module 
Querying for Software Engineering,” Proc. Int’l Conf. 
Software Eng., pp. 64-73, 1998. 


	FE3CWS
	Amster-dam teacher training material
	Table of contents
	The architecture of a scheduler for a cloud application
	Using the BaTS methodology on AWS resources
	The optimized sampling phase
	Different orders of magnitude in pricing
	The tail phase of the computation
	Using the BaTS methodology in education
	References
	Conclusion & Future Work
	Problem definition
	Solution proposal
	Discussion
	References
	Motivation
	Greenness in Programming Languages
	Greenness in Data Structures
	Greenness in Source Code
	Conclusions
	References
	Introduction
	Audience
	Task Oriented Programming
	Used Techniques
	Teaching at the Winter School
	The mTask System
	Used Techniques
	Teaching at the Winter School
	Conclusion
	References
	Introduction
	Training Activity with Interactive CPN Model Creation
	Conclusion
	References
	Introduction
	Related work
	The CodeCompass Architecture
	CodeCompass features
	Search
	Information about language symbols
	Diagrams
	Version control visualizations
	Metrics
	Browsing history
	CodeChecker - C/C++ Bug Reporting
	Namespace and type catalog
	Summary
	References


