
FE3CWS

CEFP 2019
SUMMER
SCHOOL
TEACHING
MATERIAL
Intellectual output 4 of the
ERASMUS+ project 2017-1-SK01-
KA203-035402

Some words about the

Contents
• 10 topics related to software

composition, comprehension and
correctness

• 20 authors from 7 European
universities from Croatia, Hungary,
Netherlands, Portugal and
Slovakia

• Available in 7 languages: English,
Hungarian, Slovak, Croatian,
Romanian, Bulgarian and
Portuguese

The Central European Functional Programming (CEFP) Summer
School is the second intensive programme for higher education
learners and teaching staff extending the community of the Central
European Functional Programming (CEFP) summer school in the
frame of the ERASMUS+ project No. 2017-1-SK01-KA203-035402
“Focusing Education on Composability, Comprehensibility and
Correctness of Working Software” that was held between 17 and
21 June 2019.

The included material was created and presented in the frame of
the above mentioned project. This publication is the print-
formatted version of the intellectual output O4 of the project.

© European Union, 2017-2019

The information and views set out in this publication are those of
the author(s) and do not necessarily reflect the official opinion of
the European Union. Neither the European Union institutions and
bodies nor any person acting on their behalf may be held
responsible for the use which may be made of the information
contained therein.

Table of contents
1. Visual Prototyping using Task Oriented Programming

2. Task Oriented Programming for the Internet of Things

3. Paint your Programs Green - On the Energy Efficiency
of Data Structure Implementations

4. Green Software in an Engineering Course

5. Software Application Energy Profiling for Java Projects

6. Development of Correct Software with B-Method

7. Programming of Advanced Management and
Orchestration of Virtualised Network Resources -
Selection of Case Studies

8. Code Comprehension with Advanced Tool Support

9. Functional Array Programming with Single Assignment
C: Opportunities and Challenges

10. Balanced Distributed Computation Patterns

Visual Prototyping using Task
Oriented Programming

In this course we will create applications using a visual assistant for Task Oriented Programming (TOP). TOP is a novel
programming paradigm developers can use to quickly prototype multi-user web applications. The central way of modelling
applications in TOP is by creating Tasks. Tasks represent pieces of real world work that can be performed by people or by
systems. Using a handful of operations, they can be combined into bigger and more powerful Tasks.

We will explore the basic concepts of TOP by studying some example applications, while showing how to model them using
Tasks in a visual development environment. The visual environment guides developers during the modelling process. The
tool only presents sane ways to create and expand Tasks, and gives hints how to solve type and scoping errors. This results in
correct and compilable program code.

Students are encouraged to extend the example applications in a hands on session. Our visual approach does only require
basic knowledge on programming and data types. The introduction on TOP and its modelling principles are a prerequisite
on the course on mTasks.

Task Oriented Programming for
the Internet of Things
The Internet of Things (IoT) consists of devices that sense, act, and communicate with other systems on the internet. Typical
requirements for IoT devices are that they must be cheap and consume little energy. This is achieved by driving the IoT
devices by small microprocessors with tiny amounts of memory and processing power. Most of these systems have no
proper operating system and just run a specific program to execute the intended task.

This makes programming of the IoT very challenging. The single program running on such a device must interleave all
subtasks, like monitoring inputs, controlling the peripherals and communication. Various devices that cooperate have to
agree on the protocol used and have to solve the notorious concurrent programming problems.

In this lecture we will give a hands-on introduction to Task Oriented Programming (TOP) for the IoT. In our TOP approach the
communication between devices and their servers is handled transparently by the mTask system. The entire system is
programmed in a single high-level functional program. For each subtask of the system we define a corresponding mTask.
These subtasks can be composed by task combinators to more powerful tasks. These tasks can inspect intermediated values
of other subtasks as well as communicate with any other task in the system via Shared Data Sources (SDS). Subtasks for an
IoT device are dynamically shipped to the device and interpreted there. The strong type system prevents runtime type
problems. This TOP approach greatly simplifies the development of software for the IoT.

Literature

Peter Achten. Clean for Haskell98 Programmers. 13th July
2007.

Peter Achten, Pieter Koopman and Rinus Plasmeijer. ‘An
Introduction to Task Oriented Programming’. In: Central
European Functional Programming School. Springer, 2015,
pp. 187– 245.

Douglas Adams. The Hitchhiker’s Guide to the Galaxy
Omnibus: A Trilogy in Four Parts. Vol. 6. Pan Macmillan,
2017.

Matheus Amazonas Cabral De Andrade. ‘Developing Real
Life, Task Oriented Applications for the Internet of Things’.
Master’s Thesis. Nijmegen: Radboud University, 2018. 60
pp.

Tom Brus et al. ‘Clean – a language for functional graph
rewriting’. In: Conference on Functional Programming
Languages and Computer Architecture. Springer, 1987, pp.
364– 384.

Jacques Carette, Oleg Kiselyov and Chung-Chieh Shan.
‘Finally tagless, partially evaluated: Tagless staged
interpreters for simpler typed languages’. In: Journal of
Functional Programming 19.5 (Sept. 2009), p. 509. issn:
0956-7968, 1469-7653. doi: 10.1017/
S0956796809007205.

James Cheney and Ralf Hinze. First-class phantom types.
Cornell University, 2003.

Li Da Xu, Wu He and Shancang Li. ‘Internet of things in
industries: a survey’. In: Industrial Informatics, IEEE
Transactions on 10.4 (2014), pp. 2233–2243.

L. M. G. Feijs. ‘Multi-tasking and Arduino : why and how?’
In: Design and semantics of form and movement. 8th
International Conference on Design and Semantics of Form
and Movement (DeSForM 2013). Ed. by L. L. Chen et al.
Wuxi, China, 2013, pp. 119–127. isbn: 978-90-386-3462-3.

Patrick C. Hickey et al. ‘Building embedded systems with
embedded DSLs’. In: ACM Press, 2014, pp. 3–9. isbn:
978-1-4503-2873-9. doi: 10.1145/2628136.2628146.

Pieter Koopman, Mart Lubbers and Rinus Plasmeijer. ‘A
Task-Based DSL for Microcomputers’. In: Proceedings of
the Real World Domain Specific Languages Workshop
2018 on - RWDSL2018. Vienna, Austria: ACM Press, 2018,
pp. 1–11. isbn: 978-1-4503-6355-6. doi: 10.1145/3183895.
3183902.

Mart Lubbers. ‘Task Oriented Programming and the
Internet of Things’. Master’s Thesis.  
Nijmegen: Radboud University, 2017. 69 pp.

Mart Lubbers, Pieter Koopman and Rinus Plasmeijer.
‘Multitasking on Microcontrollers using Task Oriented
Programming’. In: 2019 42st International Convention on
Information and Communication Technology, Electronics
and Microelectronics (MIPRO). COnference on
COmposability, COmprehensibility and COrrectness of
Working Software. Opatija, Croatia: IEEE, 2019, pp. 1842–
1846.

Mart Lubbers, Pieter Koopman and Rinus Plasmeijer. ‘Task
Oriented Programming and the Internet of Things’. In:
Proceedings of the 30th Symposium on the
Implementation and Application of Functional
Programming Languages. International Symposium on
Implementation and Application of Functional Languages.

Lowell, MA: ACM, 2018, p. 12. isbn: 978-1-4503-7143-8.
doi: 10.1145/3310232.3310239.

Rinus Plasmeijer, Peter Achten and Pieter Koopman. ‘iTasks:
executable specifications of interactive work flow systems
for the web’. In: ACM SIGPLAN Notices 42.9 (2007), pp.
141–152.

Rinus Plasmeijer and Pieter Koopman. ‘A Shallow
Embedded Type Safe Extendable DSL for the Arduino’. In:
Trends in Functional Programming. Vol. 9547. Lecture
Notes in Computer Science. Cham: Springer International
Publishing, 2016. isbn: 978-3-319-39109-0 978-
3-319-39110-6. doi: 10.1007/978-3-319-39110-6.

Camil Staps and Mart Lubbers. The Clean language search
engine. 2017. url: https: //cloogle.org.

Jurrien Stutterheim, Peter Achten and Rinus Plasmeijer.
‘Maintaining Separation of Concerns Through Task
Oriented Software Development’. In: Trends in Functional
Programming. Ed. by Meng Wang and Scott Owens. Vol.
10788. Cham: Springer International Publishing, 2018, pp.
19–38. isbn: 978-3-319-89718-9 978-3-319-89719-6. doi:
10.1007/978- 3-319-89719-6_2.

Paint your Programs Green - On
the Energy Efficiency of Data
Structure Implementations

Energy-efficiency has been a concern for both hardware and low-level software engineers for years [1], [2], [3]. However, the
growing worldwide movement towards sustainability, including sustainability in software [4], combined with the systemic
nature of energy efficiency as a quality attribute have motivated the study of the energy impact of application software in
execution. This tendency has led researchers to evaluate existing techniques, tools, and languages for application
development from an energy-centric perspective. Recent work has studied the effect that factors such as code obfuscation
[5], Android API calls [6], object-oriented code refactorings [7], constructs for concurrent execution [8], and data types [9]
have on energy efficiency. Analyzing the impact of different factors on energy is important for software developers and
maintainers.

In this tutorial we analyze and compare the energy
efficiency of different implementations for concrete data
abstractions such as Sequences, Sets or Associative
Collections. For each implementation, we inspect how
operations such as adding, deleting or searching for
elements handle different workloads. The subjects of our
study are a functional programming language [10,11] and
an object-oriented one [13,14].

In a functional setting, we have compared the
implementations presented in Figure 1, namely using the
operations presented in Figure 2.

In the object oriented realm, we have analyzed the
implementations presented in Figure 3, namely using the
operations presented in Figure 4.

Our goal is to provide developers actionable information
that has already been integrated in supporting tools, and
that can steer green software construction. We were able
to show that the same operation made available in
different implementations can differ significantly in terms
of both runtime and energy consumption. As an example,
in Figure 5 we depict the results of the remove operation
for the Sequences abstraction implementations available
in Haskell’s Edison Library.

References

[1] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-
power cmos digital design,” Solid-State Circuits, IEEE
Journal of, vol. 27, no. 4, pp. 473– 484, Apr 1992.  

[2] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of
embedded software: a first step towards software power
minimization,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 2, no. 4, pp. 437–445, Dec 1994.

[3] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-
time cpu scheduling for mobile multimedia systems,” in
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. ACM, 2003, pp. 149–163.

[4] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M.
Mahaux, B. Penzenstadler, G. Rodríguez-Navas, C. Salinesi,
N. Seyff, C. C. Venters, C. Calero, S. A. Koçak, and S. Betz,
“The karlskrona manifesto for sustainability design,” CoRR,
vol. abs/1410.6968, 2014.

[5] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J.
Clause, “How does code obfuscation impact energy
usage?” in 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada,
September 29 - October 3, 2014, 2014, pp. 131–140.

[6] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, R.
Oliveto, M. D. Penta, and D. Poshyvanyk, “Mining energy-
greedy API usage patterns in android apps: an empirical
study,” in 11th Working Conference on Mining Software
Repositories, MSR 2014, Proceedings, May 31 - June 1,
2014, Hyderabad, India, 2014, pp. 2–11.  

[7] C. Sahin, L. Pollock, and J. Clause, “How do code
refactorings affect energy usage?” in Proceedings of the
8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2014, pp. 36:1–
36:10.

[8] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy
behaviors of thread management constructs,” in
Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA ’14. New York, NY, USA: ACM,
2014, pp. 345–360. [Online]. Available: http://doi.acm.org/
10.1145/2660193.2660235

[9] K. Liu, G. Pinto, and Y. Liu, “Data-oriented
characterization of application-level energy optimization,”
in Proceedings of the 18th International Conference on
Fundamental Approaches to Software Engineering, ser.
Lecture Notes in Computer Science, vol. 9033, 2015, pp.
316–331.

[10] Luis Gabriel Lima, Francisco Soares-Neto, Paulo
Lieuthier, Fernando Castor, Gilberto Melfe, João Paulo
Fernandes: Haskell in Green Land: Analyzing the Energy
Behavior of a Purely Functional Language. SANER 2016:
517-528

[11] Luis Gabriel Lima, Francisco Soares-Neto, Paulo
Lieuthier, Fernando Castor, Gilberto Melfe, João Paulo
Fernandes, On Haskell and energy efficiency. Journal of
Systems and Software 149: 554-580 (2019)

[12] Rui Pereira, Marco Couto, João Saraiva, Jácome
Cunha, João Paulo Fernandes: The influence of the Java
collection framework on overall energy consumption.
GREENS@ICSE 2016: 15-21

[13] Rui Pereira, Pedro Simão, Jácome Cunha, João Saraiva:
jStanley: placing a green thumb on Java collections. ASE
2018: 856-859

Green Software in an
Engineering Course

Sustainable development has become an increasingly important theme not only in the world politics, but also an increasingly
central theme for the engineering professions around the world. Software engineers are no exception as shown in various
recent research studies. Despite the intensive research on green software, today’s undergraduate computing education often
fails to address our environmental responsibility. We present a module on green software that we introduced as part of an
advanced course on software engineering. We introduce a catalogue of energy smells and green refactorings, which our
preliminary results show that do help students in reason and optimizing the energy consumption of software systems.

References
[1] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-
power cmos digital design,” Solid-State Circuits, IEEE
Journal of, vol. 27, no. 4, pp. 473– 484, Apr 1992.

[2] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of
embedded software: a first step towards software power
minimization,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 2, no. 4, pp. 437–445, Dec 1994.

[3] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, R.
Oliveto, M. D. Penta, and D. Poshyvanyk, “Mining energy-
greedy API usage patterns in android apps: an empirical
study,” in 11th Working Conference on Mining Software
Repositories, MSR 2014, Proceedings, May 31 - June 1,
2014, Hyderabad, India, 2014, pp. 2–11.

[4] C. Sahin, L. Pollock, and J. Clause, “How do code
refactorings affect energy usage?” in Proceedings of the
8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2014, pp. 36:1–
36:10.

[5] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy
behaviors of thread management constructs,” in

Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA ’14. New York, NY, USA: ACM,
2014, pp. 345–360.

[6] K. Liu, G. Pinto, and Y. Liu, “Data-oriented
characterization of application-level energy optimization,”
in Proceedings of the 18th International Conference on
Fundamental Approaches to Software Engineering, ser.
Lecture Notes in Computer Science, vol. 9033, 2015, pp.
316–331.

[7] Luis Gabriel Lima, Francisco Soares-Neto, Paulo
Lieuthier, Fernando Castor, Gilberto Melfe, João Paulo
Fernandes: Haskell in Green Land: Analyzing the Energy
Behavior of a Purely Functional Language. SANER 2016:
517-528

[8] Rui Pereira, Marco Couto, João Saraiva, Jácome Cunha,
João Paulo Fernandes: The influence of the Java collection
framework on overall energy consumption. GREENS@ICSE
2016: 15-21

[9] Rui Pereira, Pedro Simão, Jácome Cunha, João Saraiva:
jStanley: placing a green thumb on Java collections. ASE
2018: 856-859

Software Application Energy
Profiling for Java Projects

This tutorial addresses the energy efficiency of software applications implemented in Java programming language. The first
part describes the current state of the art in energy profiling as well as options for displaying energy consumption of
segments of the source code. Next, a custom code analysis method for displaying information is presented addressing the
processor, operating memory, and hard disk. After this analysis, a short introduction to the implemented Java application
follows. In order to demonstrate the practical use of the application, several test solutions are created, where we measured
the energy consumption. With each example, we put emphasis on solving one problem with at least two solutions to
determine which implementation has lower energy intensity. The results of the examples are also part of this tutorial.

References
[1] D. Li, W. G. J. Halfond, An investigation into energy-saving programming practices for android smartphone app
development, in Proc. of the 3rd International Workshop on Green and Sustainable Software, GREENS 2014, ACM, 2014, pp.
46–53.

[2] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. J. Halfond: Integrated energy-directed test suite optimization, in Proc. of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, ACM, 2014, pp. 339–350.

[3] M. Santos, J. Saraiva, Z. Porkolab, D. Krupp: Energy Consumption Measurement of C/C++ Programs Using Clang Tooling,
in Proceedings of the SQAMIA 2017: 6th Workshop of Software Quality, Analysis, Monitoring, Improvement, and Appli-
cations, Z. Budimac, ed., Belgrade, Serbia, 11-13.9.2017, Paper No. 15, 8 pages, also published online by CEUR Workshop
Proceedings No. 1938 ISSN 1613-0073.

[4] J.Saraiva, M.Couto, Cs.Szabo, D.Novak: Towards Energy-Aware Coding Practices for Android, Acta Electrotechnica et
Informatica, Vol. 18, No. 1, 2018, pp. 19–25. https://doi.org/10.15546/aeei-2018-0003

[5] Cs. Szabo, E.M.M. Alzeyani: Measuring Energy Efficiency of Selected Working Software, Studia Universitatis Babe ş-Bolyai
Informatica, Vol. 63, No. 1, 2018, pp. 5–16. https://doi.org/10.24193/subbi.2018.1.01

[6] Cs. Szabo, J. Saraiva: Focusing software engineering education on green application development, in Conference of
Information Technology and Development of Education – ITRO 2017, Novi Sad, Serbia, pp. 165–169, ISBN
978-86-7672-302-7.

Development of
Correct
Software with
B-Method
One of the well-recognized approaches to the
development of correct software systems is the utilization
of formal methods (FM) for their specification and
verification. FM are rigorous mathematically based
techniques for the specification, analysis, development and
verification of software and hardware. Rigorous means that
a formal method provides a formal language with
unambiguously defined syntax and semantics and
mathematically based means that some mathematical

apparatus (formal logic, set theory, etc.) is used to define
the language.

One of the FM used in industrial practice is B-
Method[1,2,3,4], a state based, model-oriented formal
method intended for software development. B-Method is
primarily used in the railway sector, for the safety-critical
software behind automated urban metro subway systems
(including the one in Budapest). The strength of B-Method
lies in a well-defined development process, which allows to
specify a software system as a collection of components
called B-machines and to refine such an abstract
specification to a concrete one. The concrete specification
can be automatically translated to ADA, C or another
programming language. An internal consistency of the
abstract specification and correctness of each refinement
step are verified by proving a set of predicates called proof
obligations (PObs). The whole development process,
including proving, is supported by an industrial-strength
software tool called Atelier B[5].

This tutorial serves as a gentle, practical, introduction to B-
Method. During the tutorial, the participants will develop a
simple software controller for a railway scenario. They will
be able to run the scenario with the controller in a toolset
containing corresponding simulation game.

This tutorial serves as a gentle, practical, introduction to B-
Method. During the tutorial, the participants will develop a
simple software controller for a railway scenario. They will be
able to run the scenario with the controller in the Train Director/
TS2JavaConn (TD/TS2JC) toolset [6,7]. The toolset consists of a
modified version of the Train Director [8] (Fig. 1) simulation
game and an application called TS2JavaConn (Fig. 2), which
allows using separately developed software controllers with the
simulation game. With the ambition of using the toolset for
controller prototyping it has been later [9] extended by a
customized version of the Open Rails [10] 3D train simulator.

After an introduction to the B-Method, the participants of the
course are given a controller for a single-track railway scenario
with two sections (Fig.3). The controller is written in the
language of B-Method. During the course, they develop and
verify a controller for a single-track railway scenario with three
sections (Fig. 4).

Listing 1. The controller for the railway scenario with two
sections, written in the language of B-Method

MACHINE route2sec

SETS

 PROP_SIGNAL={green, red};

 PROP_SECTION={free,occup}

CONCRETE_VARIABLES

 e0, e1, sig0, sig1, e0_sig1, sig0_e1

INVARIANT

 e0:PROP_SIGNAL & e1:PROP_SIGNAL & sig0:PROP_SIGNAL & sig1:PROP_SIGNAL
&

 e0_sig1:PROP_SECTION & sig0_e1:PROP_SECTION &

 (e0=green => sig1=red) & (sig1=green => e0=red) &

 (e1=green => sig0=red) & (sig0=green => e1=red) &

 (e0=green => e0_sig1=free) & (sig1=green => e0_sig1=free) &

 (e1=green => sig0_e1=free) & (sig0=green => sig0_e1=free)

INITIALISATION

 e0:=red || e1:=red || sig0:=red || sig1:=red || e0_sig1:= free || sig0_e1:= free

OPERATIONS

 ss <-- getSig_sig0 = BEGIN ss:=sig0 END;

 ss <-- getSig_sig1 = BEGIN ss:=sig1 END;

 ss <-- getEntry_e0 = BEGIN ss:=e0 END;

 ss <-- getEntry_e1 = BEGIN ss:=e1 END;

 reqGreen_e0 = IF sig1=red & e0_sig1=free THEN e0:=green END;

 reqGreen_e1 = IF sig0 = red & sig0_e1 = free THEN e1:=green END;

 reqGreen_sig0 = IF e1=red & sig0_e1= free THEN sig0:=green END;

 reqGreen_sig1 = IF e0 = red & e0_sig1 = free THEN sig1:=green END;

 enterNI_e0_sig1 = BEGIN e0_sig1:=occup || e0:=red || sig1:=red END;

 enterIN_sig0_e1 = BEGIN sig0_e1:=occup || sig0:=red || e1:=red END;

 enterNI_e1_sig0 = BEGIN sig0_e1:=occup || sig0:=red || e1:=red END;

 enterIN_sig1_e0 = BEGIN e0_sig1:=occup || e0:=red || sig1:=red END;

 leaveNI_e0_sig1 = BEGIN e0_sig1:=free END;

 leaveIN_sig0_e1 = BEGIN sig0_e1:=free END;

 leaveNI_e1_sig0 = BEGIN sig0_e1:=free END;

 leaveIN_sig1_e0 = BEGIN e0_sig1:=free END

END

References
1. Abrial, J. R.: The B-Book: Assigning Programs to

Meanings, Cambridge University Press, 1996.

2. Abrial, J. R. : Modeling in Event-B: System and Software
Engineering, Cambridge University Press, 2010.

3. Lano, K.: The B Language and Method: A Guide to
Practical Formal Development, Springer-Verlag, FACIT
series, 1996.

4. Schneider, S.: The B-Method: An Introduction, Palgrave
Macmillan, Cornerstones of Computing series, 2001.

5. https://www.atelierb.eu/

6. Korečko, Š., Sorád, J.: Using simulation games in
teaching formal methods for software development, In:
Innovative Teaching Strategies and New Learning
Paradigms in Computer Programming, R. Queirós, Ed.,
pp. 106–130, IGI Global, 2015.

7. Korečko, Š., Sorád, J., Dudláková, Z., Sobota, B.: A
Toolset for Support of Teaching Formal Software
Development In: Lecture Notes in Computer Science :
Software Engineering and Formal Methods : 12th

Internatinal Conference, SEFM 2014, pp. 278-283,
Springer, 2014.

8. https://www.backerstreet.com/traindir/en/trdireng.php

9. Korečko, Š., Sobota, B.: Computer Games as Virtual
Environments for Safety-Critical Software Validation, in 
Journal of Information and Organizational Sciences,
vol. 41, no. 2, 2017.

10. http://openrails.org

Programming of Advanced
Management and Orchestration
of Virtualised Network
Resources - Selection of Case
Studies
New management and orchestration (MANO) functions are standardised for use in distributed and virtualised network
environments. Their main role is to provide safe and reliable operation of applications using network functions. Therefore, as
continuation of our previous lecture where we provide basic concepts, here in this lecture we will provide a selection of case
studies where these functions are implemented and explain the advanced mechanisms behind and simplicity of their
application.

References
[1] ETSI Industry Specification Group (ISG) NFV: ETSI GS NFV- MAN 001 v1.1.1: Network Functions Virtualisation (NFV);
Management and Orchestration European Telecommunications Standards Institute (ETSI), 2014, https://www.etsi.org/
deliver/etsi_gs/NFV- MAN/001_099/001/01.01.01 60/gs_NFV-MAN001v010101p.pdf, accessed July 1, 2018

[2] Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: Challenges and opportunities for innovations.
IEEE Communications Magazine 53(2), 90–97 (2015)

[3] OpenStack Cloud Software. OpenStack Foundation (2018), www.openstack.org, accessed July 1, 2018

Code Comprehension with
Advanced Tool Support

In this tutorial we will introduce the state of the art code comprehension tools to the students. We will give a theoretical
foundation for code comprehension, navigation and code visualisation methods and approaches to apply them in practical
software development. In the practice session we will demonstrate how to set up a specific toolset: CodeCompass with
incremental parsing, Visual Studio Code as front-end tool and the usage of the Language Server Protocol. We will parse an
open source library and find and fix a specific bug in it using the toolset.

References
[1] Jonathan Sillito, Gail C. Murphy, Kris De Volder. (2008).
Asking and Answering Questions during a Programming
Change Task. IEEE Transactions on Software Engineering,
VOL. 34, NO. 4, July/August 2008.

[2] Porkolab, Zoltan & Brunner, Tibor & Krupp, Daniel &
Csordas, Marton. (2018). Codecompass: an open software
comprehension framework for industrial usage. 361- 369.
10.1145/3196321.3197546.

[3] Nathan Hawes, Stuart Marshall, Craig Anslow. (2015).
CodeSurveyor: Mapping LargeScale Software to Aid in
Code Comprehension. 2015 IEEE 3rd Working Conference
on Software Visualization (VISSOFT) , 27-28 Sept. 2015.

[4] Porkolab,Zoltan & Brunner,Tibor (2018). The
codecompass comprehension framework. 393-396.
10.1145/3196321.3196352

[5] CodeCompass, https://github.com/Ericsson/
CodeCompass. Last accessed 5 Nov 2018.

[6] Brunner, Tibor & Porkolab, Zoltan. (2017). Two
Dimensional Visualization of Soft- ware Metrics.

Proceedings of the Sixth Workshop on Software Quality
Analysis, Monitoring, Improvement, and Applications.

[7] B. De Alwis and G.C. Murphy. (1998). Using Visual
Momentum to Explain Dis- orientation in the Eclipse IDE.
Proc. IEEE Symp. Visual Languages and Human Centric
Computing, pp. 51-54, 2006.

Functional Array Programming
with Single Assignment C:
Opportunities and Challenges

SAC (Single Assignment C) is in several aspects a functional programming language out of the ordinary. As the name
suggests, SAC combines a C-like syntax (with lots of curly brackets) with a state-free, purely functional semantics. Originally
motivated to ease adoption by programmers with an imperative background, the choice offers surprising insights into what
constitutes a "typical" functional or a "typical" imperative programming language construct. Again on the exotic side for a
functional language, SAC emphasises multi-dimensional arrays, instead of lists and trees. Array programming treats multi-
dimensional arrays in a holistic way: functions map potentially huge argument arrays to result arrays with a call-by-value
semantics, and new array operations are defined by composition of existing ones. SAC is a high-productivity language for
application domains that deal with large collections of data in a computationally intensive way.

At the same time SAC also is a high performance language competing with low-level imperative languages through
compilation technology. The abstract view on arrays combined with the functional semantics support far-reaching program
transformations. A highly optimised runtime system takes care of automatic memory management with a focus on immediate
memory reuse. Last not least, the SAC compiler exploits the state-free semantics of SAC and the data-parallel nature of SAC
programs for fully compiler-directed acceleration on a large variety of contemporary machine architectures, from multi-core
servers to GPGPU accelerators and clusters of workstations.

The lectures motivate the language design of SAC and provide a hands-on introduction to array programming as a
paradigm. We look into all aspects from the underlying array calculus to the concrete language design with imperative-
looking functional code, discuss a multitude of examples, explore compilation challenges and eventually see some
performance results on various parallel computing architectures.

Balanced Distributed
Computation Patterns

The state-of-the-art concurrent software development made extensive usage of various methodologies and approaches to
obtain high speed up. However, parallelism remains one of the most difficult domains especially in the case of pattern based
programming approaches. The main purpose is to explore parallel computation schemes in a new environment, to illustrate
the appropriateness and applicability in novel distributed computation setups. The amount of parallelism is explored based
on many factors such as: applied computation pattern refined granularity, semantics of distributed nodes, data streaming,
and especially load balancing.

References
[1] Zsok V.: D-Clean Semantics for Generating Distributed
Computation Nodes, Work- shop on Generative
Technologies, WGT 2010, Satellite workshop at ETAPS
2010, Paphos, Cyprus, March 27, 2010, pp. 77–84.

[2] Zsok V., Hernyak Z., and Horvath, Z.: Designing
Distributed Computational Skeletons in D-Clean and D-
Box. Central European Functional Programming School
CEFP 2005, First Summer School, Budapest, Hungary, July
4-15, 2005, Revised Selected Lectures, LNCS Vol. 4164,
Springer-Verlag, 2006, pp. 223–256.

[3] Zsok V., Koopman, P., Plasmeijer, R.: Generic Executable
Semantics for D-Clean, Proceedings of the Third Workshop
on Generative Technologies, WGT 2011, ETAPS 2011,
Saarbrucken, Germany, March 27, 2011, ENTCS Vol. 279,
Issue 3, Elsevier, December 2011, pp. 85–95.

[4] Zsok V., Porkolab Z.: Rapid Prototyping for Distributed
D-Clean using C++ Tem- plates, Annales Universitatis
Scientiarum Budapestinensis de Rolando Eotvos
Nominatae, Sectio Computatorica, Eotvos Lorand
University, Budapest, Hungary, 2012, Vol. 37, pp. 19–46.  

[5] Zsok V. et al.: Modeling CPS Systems using Functional
Programming, Proc. of IFL17, Uni. of Bristol, pp. 168–174.  

	FE3CWS
	cefp 2019 summer school teaching material
	Table of contents
	Literature
	References
	References
	References
	References
	References
	References
	References

