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Visual Prototyping using Task 
Oriented Programming 

In this course we will create applications using a visual assistant for Task Oriented Programming (TOP). TOP is a novel 
programming paradigm developers can use to quickly prototype multi-user web applications. The central way of modelling 
applications in TOP is by creating Tasks. Tasks represent pieces of real world work that can be performed by people or by 
systems. Using a handful of operations, they can be combined into bigger and more powerful Tasks. 

We will explore the basic concepts of TOP by studying some example applications, while showing how to model them using 
Tasks in a visual development environment. The visual environment guides developers during the modelling process. The 
tool only presents sane ways to create and expand Tasks, and gives hints how to solve type and scoping errors. This results in 
correct and compilable program code. 

Students are encouraged to extend the example applications in a hands on session. Our visual approach does only require 
basic knowledge on programming and data types. The introduction on TOP and its modelling principles are a prerequisite 
on the course on mTasks.



Task Oriented Programming for 
the Internet of Things 
The Internet of Things (IoT) consists of devices that sense, act, and communicate with other systems on the internet. Typical 
requirements for IoT devices are that they must be cheap and consume little energy. This is achieved by driving the IoT 
devices by small microprocessors with tiny amounts of memory and processing power. Most of these systems have no 
proper operating system and just run a specific program to execute the intended task. 

This makes programming of the IoT very challenging. The single program running on such a device must interleave all 
subtasks, like monitoring inputs, controlling the peripherals and communication. Various devices that cooperate have to 
agree on the protocol used and have to solve the notorious concurrent programming problems. 

In this lecture we will give a hands-on introduction to Task Oriented Programming (TOP) for the IoT. In our TOP approach the 
communication between devices and their servers is handled transparently by the mTask system. The entire system is 
programmed in a single high-level functional program. For each subtask of the system we define a corresponding mTask. 
These subtasks can be composed by task combinators to more powerful tasks. These tasks can inspect intermediated values 
of other subtasks as well as communicate with any other task in the system via Shared Data Sources (SDS). Subtasks for an 
IoT device are dynamically shipped to the device and interpreted there. The strong type system prevents runtime type 
problems. This TOP approach greatly simplifies the development of software for the IoT.
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Paint your Programs Green - On 
the Energy Efficiency of Data 
Structure Implementations 

Energy-efficiency has been a concern for both hardware and low-level software engineers for years [1], [2], [3]. However, the 
growing worldwide movement towards sustainability, including sustainability in software [4], combined with the systemic 
nature of energy efficiency as a quality attribute have motivated the study of the energy impact of application software in 
execution. This tendency has led researchers to evaluate existing techniques, tools, and languages for application 
development from an energy-centric perspective. Recent work has studied the effect that factors such as code obfuscation 
[5], Android API calls [6], object-oriented code refactorings [7], constructs for concurrent execution [8], and data types [9] 
have on energy efficiency. Analyzing the impact of different factors on energy is important for software developers and 
maintainers.



In this tutorial we analyze and compare the energy 
efficiency of different implementations for concrete data 
abstractions such as Sequences, Sets or Associative 
Collections. For each implementation, we inspect how 
operations such as adding, deleting or searching for 
elements handle different workloads. The subjects of our 
study are a functional programming language [10,11] and 
an object-oriented one [13,14].  

In a functional setting, we have compared the 
implementations presented in Figure 1, namely using the 
operations presented in Figure 2. 

In the object oriented realm, we have analyzed the 
implementations presented in Figure 3, namely using the 
operations presented in Figure 4. 

Our goal is to provide developers actionable information 
that has already been integrated in supporting tools, and 
that can steer green software construction. We were able 
to show that the same operation made available in 
different implementations can differ significantly in terms 
of both runtime and energy consumption. As an example, 
in Figure 5 we depict the results of the remove operation 
for the Sequences abstraction implementations available 
in Haskell’s Edison Library.
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Green Software in an 
Engineering Course 

Sustainable development has become an increasingly important theme not only in the world politics, but also an increasingly 
central theme for the engineering professions around the world.  Software engineers are no exception as shown in various 
recent research studies. Despite the intensive research on green software, today’s undergraduate computing education often 
fails to address our environmental responsibility. We present a module on green software that we introduced as part of an 
advanced course on software engineering. We introduce a catalogue of energy smells and green refactorings, which our 
preliminary results show that do help students in reason and optimizing the energy consumption of software systems.
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Software Application Energy 
Profiling for Java Projects 

This tutorial addresses the energy efficiency of software applications implemented in Java programming language. The first 
part describes the current state of the art in energy profiling as well as options for displaying energy consumption of 
segments of the source code. Next, a custom code analysis method for displaying information is presented addressing the 
processor, operating memory, and hard disk. After this analysis, a short introduction to the implemented Java application 
follows. In order to demonstrate the practical use of the application, several test solutions are created, where we measured 
the energy consumption. With each example, we put emphasis on solving one problem with at least two solutions to 
determine which implementation has lower energy intensity. The results of the examples are also part of this tutorial.
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Development of 
Correct 
Software with 
B-Method 
One of the well-recognized approaches to the 
development of correct software systems is the utilization 
of formal methods (FM) for their specification and 
verification. FM are rigorous mathematically based 
techniques for the specification, analysis, development and 
verification of software and hardware. Rigorous means that 
a formal method provides a formal language with 
unambiguously defined syntax and semantics and 
mathematically based means that some mathematical 

apparatus (formal logic, set theory, etc.) is used to define 
the language. 

One of the FM used in industrial practice is B-
Method[1,2,3,4], a state based, model-oriented formal 
method intended for software development. B-Method is 
primarily used in the railway sector, for the safety-critical 
software behind automated urban metro subway systems 
(including the one in Budapest). The strength of B-Method 
lies in a well-defined development process, which allows to 
specify a software system as a collection of components 
called B-machines and to refine such an abstract 
specification to a concrete one. The concrete specification 
can be automatically translated to ADA, C or another 
programming language. An internal consistency of the 
abstract specification and correctness of each refinement 
step are verified by proving a set of predicates called proof 
obligations (PObs). The whole development process, 
including proving, is supported by an industrial-strength 
software tool called Atelier B[5]. 

This tutorial serves as a gentle, practical, introduction to B-
Method. During the tutorial, the participants will develop a 
simple software controller for a railway scenario. They will 
be able to run the scenario with the controller in a toolset 
containing corresponding simulation game.



This tutorial serves as a gentle, practical, introduction to B-
Method. During the tutorial, the participants will develop a 
simple software controller for a railway scenario. They will be 
able to run the scenario with the controller in the Train Director/
TS2JavaConn (TD/TS2JC) toolset [6,7]. The toolset consists of a 
modified version of the Train Director [8] (Fig. 1) simulation 
game and an application called TS2JavaConn (Fig. 2), which 
allows using separately developed software controllers with the 
simulation game. With the ambition of using the toolset for 
controller prototyping it has been later [9] extended by a 
customized version of the Open Rails [10] 3D train simulator. 

 

After an introduction to the B-Method, the participants of the 
course are given a controller for a single-track railway scenario 
with two sections (Fig.3). The controller is written in the 
language of B-Method. During the course, they develop and 
verify a controller for a single-track railway scenario with three 
sections (Fig. 4). 



Listing 1. The controller for the railway scenario with two 
sections,  written in the language of B-Method 

MACHINE  route2sec 

SETS 

    PROP_SIGNAL={green, red}; 

    PROP_SECTION={free,occup}     

CONCRETE_VARIABLES 

    e0, e1, sig0, sig1, e0_sig1, sig0_e1      

INVARIANT 

    e0:PROP_SIGNAL & e1:PROP_SIGNAL &  sig0:PROP_SIGNAL & sig1:PROP_SIGNAL 
& 

    e0_sig1:PROP_SECTION & sig0_e1:PROP_SECTION & 

    (e0=green => sig1=red) & (sig1=green => e0=red)  & 

    (e1=green => sig0=red) & (sig0=green => e1=red)  & 

    (e0=green   => e0_sig1=free) & (sig1=green => e0_sig1=free) &  

    (e1=green   => sig0_e1=free) & (sig0=green => sig0_e1=free)    

       

INITIALISATION    

    e0:=red || e1:=red ||    sig0:=red || sig1:=red ||    e0_sig1:= free || sig0_e1:= free 

     

OPERATIONS 

    ss <-- getSig_sig0 = BEGIN ss:=sig0 END; 

    ss <-- getSig_sig1 = BEGIN ss:=sig1 END; 

    ss <-- getEntry_e0 = BEGIN ss:=e0 END; 

    ss <-- getEntry_e1 = BEGIN ss:=e1 END; 

    reqGreen_e0 = IF sig1=red & e0_sig1=free THEN e0:=green END;     

    reqGreen_e1 = IF sig0 = red & sig0_e1 = free THEN e1:=green END;     

    reqGreen_sig0 = IF e1=red & sig0_e1= free THEN  sig0:=green END; 

    reqGreen_sig1 = IF  e0 = red & e0_sig1 = free THEN  sig1:=green END; 

    enterNI_e0_sig1 = BEGIN e0_sig1:=occup || e0:=red || sig1:=red END;       

    enterIN_sig0_e1 = BEGIN sig0_e1:=occup || sig0:=red || e1:=red END;    

    enterNI_e1_sig0 = BEGIN sig0_e1:=occup || sig0:=red || e1:=red END;      

    enterIN_sig1_e0 = BEGIN e0_sig1:=occup || e0:=red || sig1:=red END;    

    leaveNI_e0_sig1 = BEGIN e0_sig1:=free  END;     

    leaveIN_sig0_e1 = BEGIN sig0_e1:=free  END;     

    leaveNI_e1_sig0 = BEGIN sig0_e1:=free  END;      

    leaveIN_sig1_e0 = BEGIN e0_sig1:=free  END     

END
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Programming of Advanced 
Management and Orchestration 
of Virtualised Network 
Resources - Selection of Case 
Studies 
New management and orchestration (MANO) functions are standardised for use in distributed and virtualised network 
environments. Their main role is to provide safe and reliable operation of applications using network functions. Therefore, as 
continuation of our previous lecture where we provide basic concepts, here in this lecture we will provide a selection of case 
studies where these functions are implemented and explain the advanced mechanisms behind and simplicity of their 
application.
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Code Comprehension with 
Advanced Tool Support 

In this tutorial we will introduce the state of the art code comprehension tools to the students. We will give a theoretical 
foundation for code comprehension, navigation and code visualisation methods and approaches to apply them in practical 
software development. In the practice session we will demonstrate how to set up a specific toolset: CodeCompass with 
incremental parsing, Visual Studio Code as front-end tool and the usage of the Language Server Protocol. We will parse an 
open source library and find and fix a specific bug in it using the toolset.
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Functional Array Programming 
with Single Assignment C: 
Opportunities and Challenges 

SAC (Single Assignment C) is in several aspects a functional programming language out of the ordinary. As the name 
suggests, SAC combines a C-like syntax (with lots of curly brackets) with a state-free, purely functional semantics. Originally 
motivated to ease adoption by programmers with an imperative background, the choice offers surprising insights into what 
constitutes a "typical" functional or a "typical" imperative programming language construct. Again on the exotic side for a 
functional language, SAC emphasises multi-dimensional arrays, instead of lists and trees. Array programming treats multi-
dimensional arrays in a holistic way: functions map potentially huge argument arrays to result arrays with a call-by-value 
semantics, and new array operations are defined by composition of existing ones. SAC is a high-productivity language for 
application domains that deal with large collections of data in a computationally intensive way.



At the same time SAC also is a high performance language competing with low-level imperative languages through 
compilation technology. The abstract view on arrays combined with the functional semantics support far-reaching program 
transformations. A highly optimised runtime system takes care of automatic memory management with a focus on immediate 
memory reuse. Last not least, the SAC compiler exploits the state-free semantics of SAC and the data-parallel nature of SAC 
programs for fully compiler-directed acceleration on a large variety of contemporary machine architectures, from multi-core 
servers to GPGPU accelerators and clusters of workstations. 

The lectures motivate the language design of SAC and provide a hands-on introduction to array programming as a 
paradigm. We look into all aspects from the underlying array calculus to the concrete language design with imperative-
looking functional code, discuss a multitude of examples, explore compilation challenges and eventually see some 
performance results on various parallel computing architectures.



Balanced Distributed 
Computation Patterns 

The state-of-the-art concurrent software development made extensive usage of various methodologies and approaches to 
obtain high speed up. However, parallelism remains one of the most difficult domains especially in the case of pattern based 
programming approaches. The main purpose is to explore parallel computation schemes in a new environment, to illustrate 
the appropriateness and applicability in novel distributed computation setups. The amount of parallelism is explored based 
on many factors such as: applied computation pattern refined granularity, semantics of distributed nodes, data streaming, 
and especially load balancing.
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